AurelioAguirre's picture
Changing init to use params
1bcc710
raw
history blame
9.3 kB
import httpx
from typing import Optional, AsyncIterator, Dict, Any, Iterator, List
import logging
import asyncio
from litserve import LitAPI
from pydantic import BaseModel
class GenerationResponse(BaseModel):
generated_text: str
class InferenceApi(LitAPI):
def __init__(self, config: Dict[str, Any]):
"""Initialize the Inference API with configuration."""
super().__init__()
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing Inference API")
self._device = None
self.stream = False
self.config = config
self.llm_config = config.get('llm_server', {})
def setup(self, device: Optional[str] = None):
"""Synchronous setup method required by LitAPI"""
self._device = device
self.logger.info(f"Inference API setup completed on device: {device}")
return self # It's common for setup methods to return self for chaining
async def _get_client(self):
"""Get or create HTTP client as needed"""
return httpx.AsyncClient(
base_url=self.llm_config.get('base_url', 'http://localhost:8002'),
timeout=float(self.llm_config.get('timeout', 60.0))
)
def _get_endpoint(self, endpoint_name: str) -> str:
"""Get full endpoint path including prefix"""
endpoints = self.llm_config.get('endpoints', {})
api_prefix = self.llm_config.get('api_prefix', '')
endpoint = endpoints.get(endpoint_name, '')
return f"{api_prefix}{endpoint}"
def predict(self, x: str, **kwargs) -> Iterator[str]:
"""Non-async prediction method that yields results."""
loop = asyncio.get_event_loop()
async def async_gen():
async for item in self._async_predict(x, **kwargs):
yield item
gen = async_gen()
while True:
try:
yield loop.run_until_complete(gen.__anext__())
except StopAsyncIteration:
break
async def _async_predict(self, x: str, **kwargs) -> AsyncIterator[str]:
"""Internal async prediction method."""
if self.stream:
async for chunk in self.generate_stream(x, **kwargs):
yield chunk
else:
response = await self.generate_response(x, **kwargs)
yield response
async def generate_embedding(self, text: str) -> List[float]:
"""Generate embedding vector from input text."""
self.logger.debug(f"Forwarding embedding request for text: {text[:50]}...")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('embedding'),
json={"text": text}
)
response.raise_for_status()
data = response.json()
return data["embedding"]
except Exception as e:
self.logger.error(f"Error in generate_embedding: {str(e)}")
raise
async def check_system_status(self) -> Dict[str, Any]:
"""Check system status of the LLM Server."""
self.logger.debug("Checking system status...")
try:
async with await self._get_client() as client:
response = await client.get(
self._get_endpoint('system_status')
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in check_system_status: {str(e)}")
raise
async def download_model(self, model_name: Optional[str] = None) -> Dict[str, str]:
"""Download model files from the LLM Server."""
self.logger.debug(f"Forwarding model download request for: {model_name or 'default model'}")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('model_download'),
params={"model_name": model_name} if model_name else None
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in download_model: {str(e)}")
raise
except Exception as e:
self.logger.error(f"Error initiating model download: {str(e)}")
raise
async def validate_system(self) -> Dict[str, Any]:
"""Validate system configuration and setup."""
self.logger.debug("Validating system configuration...")
try:
async with await self._get_client() as client:
response = await client.get(
self._get_endpoint('system_validate')
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in validate_system: {str(e)}")
raise
async def initialize_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
"""Initialize specified model or default model."""
self.logger.debug(f"Initializing model: {model_name or 'default'}")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('model_initialize'),
params={"model_name": model_name} if model_name else None
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in initialize_model: {str(e)}")
raise
async def initialize_embedding_model(self, model_name: Optional[str] = None) -> Dict[str, Any]:
"""Initialize embedding model."""
self.logger.debug(f"Initializing embedding model: {model_name or 'default'}")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('model_initialize_embedding'),
json={"model_name": model_name} if model_name else {}
)
response.raise_for_status()
return response.json()
except Exception as e:
self.logger.error(f"Error in initialize_embedding_model: {str(e)}")
raise
def decode_request(self, request: Any, **kwargs) -> str:
"""Convert the request payload to input format."""
if isinstance(request, dict) and "prompt" in request:
return request["prompt"]
return request
def encode_response(self, output: Iterator[str], **kwargs) -> Dict[str, Any]:
"""Convert the model output to a response payload."""
if self.stream:
return {"generated_text": output}
try:
result = next(output)
return {"generated_text": result}
except StopIteration:
return {"generated_text": ""}
async def generate_response(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> str:
"""Generate a complete response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding generation request for prompt: {prompt[:50]}...")
try:
async with await self._get_client() as client:
response = await client.post(
self._get_endpoint('generate'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
)
response.raise_for_status()
data = response.json()
return data["generated_text"]
except Exception as e:
self.logger.error(f"Error in generate_response: {str(e)}")
raise
async def generate_stream(
self,
prompt: str,
system_message: Optional[str] = None,
max_new_tokens: Optional[int] = None
) -> AsyncIterator[str]:
"""Generate a streaming response by forwarding the request to the LLM Server."""
self.logger.debug(f"Forwarding streaming request for prompt: {prompt[:50]}...")
try:
client = await self._get_client()
async with client.stream(
"POST",
self._get_endpoint('generate_stream'),
json={
"prompt": prompt,
"system_message": system_message,
"max_new_tokens": max_new_tokens
}
) as response:
response.raise_for_status()
async for chunk in response.aiter_text():
yield chunk
await client.aclose()
except Exception as e:
self.logger.error(f"Error in generate_stream: {str(e)}")
raise
async def cleanup(self):
"""Cleanup method - no longer needed as clients are created per-request"""
pass