File size: 5,492 Bytes
90a08b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f3c9bf
99afe26
90a08b2
99afe26
 
 
 
 
 
 
90a08b2
99afe26
 
90a08b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99afe26
90a08b2
 
 
 
 
99afe26
90a08b2
 
99afe26
90a08b2
 
 
 
99afe26
90a08b2
 
 
 
 
 
99afe26
1f4bbb8
90a08b2
 
99afe26
90a08b2
 
 
 
 
99afe26
90a08b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99afe26
90a08b2
 
 
99afe26
90a08b2
99afe26
 
90a08b2
 
 
99afe26
90a08b2
 
99afe26
90a08b2
 
99afe26
90a08b2
 
 
99afe26
 
90a08b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# ingest.py
"""
Create / rebuild FAISS vector stores for Czech and English PDFs.

Default behaviour (matches main.py):
  β€’ English embeddings : sentence-transformers/all-MiniLM-L6-v2   (384-d)
  β€’ Czech   embeddings : Seznam/retromae-small-cs                 (768-d)

Set use_openai=True if you really want to produce an English store
with OpenAI's 3 072-d 'text-embedding-3-large' vectors.
"""

from pathlib import Path
from typing import List

from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import DirectoryLoader, PyPDFLoader
from langchain.embeddings import (
    OpenAIEmbeddings,
    HuggingFaceEmbeddings,
)


class Ingest:
    # --------------------------------------------------------------------- #
    def __init__(
        self,
        *,
        # --- embeddings ----------------------------------------------------
        english_hf_model: str = "sentence-transformers/all-MiniLM-L6-v2",
        czech_hf_model: str   = "Seznam/retromae-small-cs",
        english_oa_model: str = "text-embedding-3-large",
        use_openai: bool      = False,              # flip to keep legacy store
        openai_api_key: str | None = None,
        # --- chunking ------------------------------------------------------
        chunk: int = 512,
        overlap: int = 256,
        # --- paths ---------------------------------------------------------
        english_store: str = "stores/english_512",
        czech_store:   str = "stores/czech_512",
        data_english:  str = "data/english",
        data_czech:    str = "data/czech",
    ):
        self.use_openai   = use_openai
        self.oa_key       = openai_api_key
        self.english_hf   = english_hf_model
        self.czech_hf     = czech_hf_model
        self.english_oa   = english_oa_model

        self.chunk   = chunk
        self.overlap = overlap

        self.english_store = Path(english_store)
        self.czech_store   = Path(czech_store)
        self.data_english  = Path(data_english)
        self.data_czech    = Path(data_czech)

    # --------------------------- helpers ---------------------------------- #
    @staticmethod
    def _loader(folder: Path):
        return DirectoryLoader(
            str(folder),
            recursive=True,
            show_progress=True,
            loader_cls=PyPDFLoader,
            use_multithreading=True,
        ).load()

    @staticmethod
    def _split(docs: List, chunk: int, overlap: int):
        splitter = RecursiveCharacterTextSplitter(chunk_size=chunk,
                                                  chunk_overlap=overlap)
        return splitter.split_documents(docs)

    # --------------------------- English ---------------------------------- #
    def ingest_english(self):
        if self.use_openai:
            if not self.oa_key:
                raise ValueError("OpenAI API key is required for OpenAI embeddings.")
            embedding = OpenAIEmbeddings(
                openai_api_key=self.oa_key,
                model=self.english_oa,
            )
            mode = f"OpenAI ({self.english_oa}) 3072-d"
        else:
            embedding = HuggingFaceEmbeddings(
                model_name=self.english_hf,
                model_kwargs={"device": "cpu"},
                encode_kwargs={"normalize_embeddings": False},
            )
            mode = f"HuggingFace ({self.english_hf}) " \
                   f"{embedding.client.get_sentence_embedding_dimension()}-d"

        print(f"\n─ Ingest EN: {mode}")
        docs  = self._loader(self.data_english)
        texts = self._split(docs, self.chunk, self.overlap)

        db = FAISS.from_documents(texts, embedding)
        db.save_local(str(self.english_store))
        print("βœ“ English store written to", self.english_store, "\n")

    # --------------------------- Czech ------------------------------------ #
    def ingest_czech(self):
        embedding = HuggingFaceEmbeddings(
            model_name=self.czech_hf,
            model_kwargs={"device": "cpu"},
            encode_kwargs={"normalize_embeddings": False},
        )
        dim = embedding.client.get_sentence_embedding_dimension()
        print(f"\n─ Ingest CZ: HuggingFace ({self.czech_hf}) {dim}-d")

        docs  = self._loader(self.data_czech)
        texts = self._split(docs, self.chunk, self.overlap)

        db = FAISS.from_documents(texts, embedding)
        db.save_local(str(self.czech_store))
        print("βœ“ Czech store written to", self.czech_store, "\n")


# -------------------- quick CLI helper ------------------------------------ #
if __name__ == "__main__":
    """
    Examples:
        # build both stores with default HF encoders (no OpenAI)
        python ingest.py

        # build English store with OpenAI encoder (keeps 3 072-d index)
        OPENAI_API_KEY=sk-... python ingest.py --openai
    """
    import argparse, os

    parser = argparse.ArgumentParser()
    parser.add_argument("--openai", action="store_true",
                        help="Use OpenAI embeddings for English.")
    parser.add_argument("--only", choices=["en", "cz"],
                        help="Ingest only that language.")
    args = parser.parse_args()

    ing = Ingest(use_openai=args.openai,
                 openai_api_key=os.getenv("OPENAI_API_KEY"))

    if args.only in (None, "en"):
        ing.ingest_english()
    if args.only in (None, "cz"):
        ing.ingest_czech()