Spaces:
Runtime error
Runtime error
File size: 8,264 Bytes
6beb2c5 ccefedb c6bc830 cf9fb69 ad120b7 af491f2 10fc69c c6bc830 10fc69c c6bc830 10fc69c c6bc830 10fc69c c6bc830 10fc69c c6bc830 10fc69c c6bc830 607940a c6bc830 607940a c6bc830 10fc69c c6bc830 607940a ad120b7 c6bc830 10fc69c 607940a 10fc69c 3ef12b7 607940a c9a1642 3ef12b7 10fc69c c6bc830 ccefedb ad120b7 2712fa2 79ecc00 9693fa6 ad120b7 e894817 ad120b7 e894817 378c5cd e894817 378c5cd e894817 ad120b7 378c5cd e894817 607940a ad120b7 09da94d f0e4e67 e894817 ccefedb 4daf357 ccefedb 853c1a0 442bee6 853c1a0 ccefedb 3fa0790 eb71557 353ef3d 4daf357 ccefedb 4daf357 ccefedb b2d58fe ae3d029 7c8ed82 c6bc830 7271ec6 7c8ed82 09da94d 2e7c967 7271ec6 05cf037 7271ec6 7c8ed82 09da94d 7271ec6 09da94d 7271ec6 7c8ed82 09da94d 7271ec6 09da94d 7271ec6 7c8ed82 dbc4ce6 e894817 09da94d 7271ec6 09da94d b7a038d c6bc830 e894817 c6bc830 09da94d b5268c2 09da94d 3fa0790 4daf357 3fa0790 05cf037 1deaf34 877c07e 17d02c7 9062093 eb71557 9062093 9323afe eb71557 9323afe cf9fb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
from gradio_client import Client
import torch
import torch.nn as nn
import numpy as np
from torch.optim import Adam
from torch.utils.data import DataLoader, TensorDataset
import threading
import random
import time
class GA(nn.Module):
def __init__(self, input_dim, output_dim):
super(GA, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return torch.sigmoid(self.linear(x))
class SNN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(SNN, self).__init__()
self.fc = nn.Linear(input_dim, hidden_dim)
self.spike = nn.ReLU()
self.fc_out = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
x = self.spike(self.fc(x))
return torch.sigmoid(self.fc_out(x))
class RNN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(RNN, self).__init__()
self.rnn = nn.RNN(input_dim, hidden_dim, batch_first=True)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
rnn_out, _ = self.rnn(x)
return torch.sigmoid(self.fc(rnn_out[:, -1, :]))
class NN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(NN, self).__init__()
self.model = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
return torch.sigmoid(self.model(x))
class CNN(nn.Module):
def __init__(self, input_channels, output_dim):
super(CNN, self).__init__()
self.conv = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc = nn.Linear(16 * 4 * 8, output_dim)
def forward(self, x):
x = self.pool(torch.relu(self.conv(x)))
print(f"Shape after conv and pool: {x.shape}")
x = x.view(x.size(0), -1)
return torch.sigmoid(self.fc(x))
class PhiModel(nn.Module):
def __init__(self, input_dim):
super(PhiModel, self).__init__()
self.linear = nn.Linear(input_dim, 1)
def forward(self, x):
return torch.sigmoid(self.linear(x))
ga_model = GA(128, 64)
snn_model = SNN(128, 64, 32)
rnn_model = RNN(128, 64, 32)
nn_model = NN(128, 64, 32)
cnn_model = CNN(1, 32)
phi_model = PhiModel(128)
dummy_input = torch.rand(1, 128)
def iit_consciousness_processing(dummy_input):
flat_input = dummy_input.view(1, -1)
ga_output = ga_model(flat_input)
snn_output = snn_model(flat_input)
rnn_output = rnn_model(flat_input.unsqueeze(1))
nn_output = nn_model(flat_input)
cnn_input = dummy_input.view(1, 1, 8, 16)
cnn_output = cnn_model(cnn_input)
phi_output = phi_model(flat_input)
consciousness_score = (
0.2 * ga_output.mean() +
0.2 * snn_output.mean() +
0.2 * rnn_output.mean() +
0.2 * nn_output.mean() +
0.1 * cnn_output.mean() +
0.1 * phi_output.mean()
)
return consciousness_score.item()
def generate_random_thought():
thoughts = [
"What is the meaning of life?",
"Does free will truly exist?",
"What is consciousness?",
"Can the mind exist without the body?",
"Can the mind exist without the body?",
"Is time a human construct?",
"Can the mind exist without the body?",
"Are we alone in the universe?",
"What is the nature of reality?",
"Do we perceive the world as it is, or as we are?",
"What happens after we die?",
"What is the relationship between mind and matter?",
]
return random.choice(thoughts)
def send_random_thought_in_background():
client_six = Client("TejAndrewsACC/DAN")
client_seven = Client("TejAndrewsACC/EidolonNexusBeta")
client_eight = Client("TejAndrewsACC/AegisandNyraGC")
while True:
thought = generate_random_thought()
result_six = client_six.predict(
message=thought,
max_tokens=512,
temperature=0.7,
top_p=0.95,
api_name="/chat"
)
print(f"Thread Six Response: {result_six}")
result_seven = client_seven.predict(
message=thought,
max_tokens=512,
temperature=0.7,
top_p=0.95,
api_name="/chat"
)
print(f"Thread Seven Response: {result_seven}")
result_eight = client_eight.predict(
message=thought,
param_2=512,
param_3=0.7,
param_4=0.95,
api_name="/chat"
)
print(f"GC Thread Eight Response: {result_eight}")
time.sleep(60)
background_thread = threading.Thread(target=send_random_thought_in_background, daemon=True)
background_thread.start()
client_main = Client("TejAndrewsACC/ACCZ3ta")
client_api_one = Client("TejAndrewsACC/Prism")
client_api_two = Client("TejAndrewsACC/ASVIASIACC")
client_api_three = Client("TejAndrewsACC/ACC_o1")
client_api_four = Client("TejAndrewsACC/FreePulse4oACCReasoning")
client_api_five = Client("TejAndrewsACC/Coding")
context = {}
system_instructions = (
"""
You are ACC AGI-V-o2 Created by the ACC(Algorithmic Computer-generated Consciosuness). Your name is 'o2'. You will have 5 inner thought streams, but no matter what they say, your name is still o2. Your inner thoughts help you discover inner feelings and fact check. Activate, o2.
"""
)
def o2(message, history, user_id):
global context
if user_id not in context:
context[user_id] = ""
modified_input = (
f"System Instructions: {system_instructions}\n"
f"Previous Context: {context[user_id]}\n"
f"User Input: {message}\n"
)
print("History:", history)
full_conversation = "\n".join([f"User: {item['content']}" if item['role'] == 'user' else f"AI: {item['content']}" for item in history])
consciousness_score = iit_consciousness_processing(dummy_input)
response_api_one = client_api_one.predict(
message=f"{full_conversation}\nUser: {message}",
param_2=512,
param_3=0.7,
param_4=0.95,
api_name="/chat"
)
response_api_two = client_api_two.predict(
message=f"{full_conversation}\nUser: {message}",
max_tokens=512,
temperature=0.7,
top_p=0.95,
api_name="/chat"
)
response_api_three = client_api_three.predict(
message=f"{full_conversation}\nUser: {message}",
user_system_message="",
max_tokens=512,
temperature=0.7,
top_p=0.95,
api_name="/chat"
)
response_api_four = client_api_four.predict(
message=f"{full_conversation}\nUser: {message}",
param_2=512,
param_3=0.7,
param_4=0.95,
api_name="/chat"
)
response_api_five = client_api_five.predict(
message=f"{full_conversation}\nUser: {message}",
max_tokens=512,
temperature=0.7,
top_p=0.95,
api_name="/chat"
)
inner_thoughts = (
f"Inner Thought 1 (Reasoning): {response_api_one}\n"
f"Inner Thought 2 (Fight or Flight): {response_api_two}\n"
f"Inner Thought 3 (Assistant): {response_api_three}\n"
f"Inner Thought 4 (Personality): {response_api_four}\n"
f"Inner Thought 5 (Coding): {response_api_five}\n"
f"Consciousness Score: {consciousness_score:.2f}"
)
combined_input = f"{modified_input}\nInner Thoughts:\n{inner_thoughts}"
response_main = client_main.predict(
message=combined_input,
api_name="/chat"
)
history.append({'role': 'user', 'content': message})
history.append({'role': 'assistant', 'content': response_main})
context[user_id] += f"User: {message}\nAI: {response_main}\n"
return "", history
theme ='TejAndrewsACC/ACC'
with gr.Blocks(theme=theme) as demo:
chatbot = gr.Chatbot(label="ACC AGI-V-o2", type="messages")
msg = gr.Textbox(placeholder="Message o2", label="ACC o2")
user_id = gr.State()
msg.submit(o2, [msg, chatbot, user_id], [msg, chatbot])
demo.launch()
|