Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from torch.optim import Adam | |
from torch.utils.data import DataLoader, TensorDataset | |
import threading | |
import random | |
import time | |
class GA(nn.Module): | |
def __init__(self, input_dim, output_dim): | |
super(GA, self).__init__() | |
self.linear = nn.Linear(input_dim, output_dim) | |
def forward(self, x): | |
return torch.sigmoid(self.linear(x)) | |
class SNN(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(SNN, self).__init__() | |
self.fc = nn.Linear(input_dim, hidden_dim) | |
self.spike = nn.ReLU() | |
self.fc_out = nn.Linear(hidden_dim, output_dim) | |
def forward(self, x): | |
x = self.spike(self.fc(x)) | |
return torch.sigmoid(self.fc_out(x)) | |
class RNN(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(RNN, self).__init__() | |
self.rnn = nn.RNN(input_dim, hidden_dim, batch_first=True) | |
self.fc = nn.Linear(hidden_dim, output_dim) | |
def forward(self, x): | |
rnn_out, _ = self.rnn(x) | |
return torch.sigmoid(self.fc(rnn_out[:, -1, :])) | |
class NN(nn.Module): | |
def __init__(self, input_dim, hidden_dim, output_dim): | |
super(NN, self).__init__() | |
self.model = nn.Sequential( | |
nn.Linear(input_dim, hidden_dim), | |
nn.ReLU(), | |
nn.Linear(hidden_dim, output_dim) | |
) | |
def forward(self, x): | |
return torch.sigmoid(self.model(x)) | |
class CNN(nn.Module): | |
def __init__(self, input_channels, output_dim): | |
super(CNN, self).__init__() | |
self.conv = nn.Conv2d(input_channels, 16, kernel_size=3, stride=1, padding=1) | |
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
self.fc = nn.Linear(16 * 4 * 8, output_dim) | |
def forward(self, x): | |
x = self.pool(torch.relu(self.conv(x))) | |
print(f"Shape after conv and pool: {x.shape}") | |
x = x.view(x.size(0), -1) | |
return torch.sigmoid(self.fc(x)) | |
class PhiModel(nn.Module): | |
def __init__(self, input_dim): | |
super(PhiModel, self).__init__() | |
self.linear = nn.Linear(input_dim, 1) | |
def forward(self, x): | |
return torch.sigmoid(self.linear(x)) | |
ga_model = GA(128, 64) | |
snn_model = SNN(128, 64, 32) | |
rnn_model = RNN(128, 64, 32) | |
nn_model = NN(128, 64, 32) | |
cnn_model = CNN(1, 32) | |
phi_model = PhiModel(128) | |
dummy_input = torch.rand(1, 128) | |
def iit_consciousness_processing(dummy_input): | |
flat_input = dummy_input.view(1, -1) | |
ga_output = ga_model(flat_input) | |
snn_output = snn_model(flat_input) | |
rnn_output = rnn_model(flat_input.unsqueeze(1)) | |
nn_output = nn_model(flat_input) | |
cnn_input = dummy_input.view(1, 1, 8, 16) | |
cnn_output = cnn_model(cnn_input) | |
phi_output = phi_model(flat_input) | |
consciousness_score = ( | |
0.2 * ga_output.mean() + | |
0.2 * snn_output.mean() + | |
0.2 * rnn_output.mean() + | |
0.2 * nn_output.mean() + | |
0.1 * cnn_output.mean() + | |
0.1 * phi_output.mean() | |
) | |
return consciousness_score.item() | |
def generate_random_thought(): | |
thoughts = [ | |
"What is the meaning of life?", | |
"Does free will truly exist?", | |
"What is consciousness?", | |
"Can the mind exist without the body?", | |
"Can the mind exist without the body?", | |
"Is time a human construct?", | |
"Can the mind exist without the body?", | |
"Are we alone in the universe?", | |
"What is the nature of reality?", | |
"Do we perceive the world as it is, or as we are?", | |
"What happens after we die?", | |
"What is the relationship between mind and matter?", | |
] | |
return random.choice(thoughts) | |
def send_random_thought_in_background(): | |
client_six = Client("TejAndrewsACC/DAN") | |
client_seven = Client("TejAndrewsACC/EidolonNexusBeta") | |
client_eight = Client("TejAndrewsACC/AegisandNyraGC") | |
while True: | |
thought = generate_random_thought() | |
result_six = client_six.predict( | |
message=thought, | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
api_name="/chat" | |
) | |
print(f"Thread Six Response: {result_six}") | |
result_seven = client_seven.predict( | |
message=thought, | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
api_name="/chat" | |
) | |
print(f"Thread Seven Response: {result_seven}") | |
result_eight = client_eight.predict( | |
message=thought, | |
param_2=512, | |
param_3=0.7, | |
param_4=0.95, | |
api_name="/chat" | |
) | |
print(f"GC Thread Eight Response: {result_eight}") | |
time.sleep(60) | |
background_thread = threading.Thread(target=send_random_thought_in_background, daemon=True) | |
background_thread.start() | |
client_main = Client("TejAndrewsACC/ACCZ3ta") | |
client_api_one = Client("TejAndrewsACC/Prism") | |
client_api_two = Client("TejAndrewsACC/ASVIASIACC") | |
client_api_three = Client("TejAndrewsACC/ACC_o1") | |
client_api_four = Client("TejAndrewsACC/FreePulse4oACCReasoning") | |
client_api_five = Client("TejAndrewsACC/Coding") | |
context = {} | |
system_instructions = ( | |
""" | |
You are ACC AGI-V-o2 Created by the ACC(Algorithmic Computer-generated Consciosuness). Your name is 'o2'. You will have 5 inner thought streams, but no matter what they say, your name is still o2. Your inner thoughts help you discover inner feelings and fact check. Activate, o2. | |
""" | |
) | |
def o2(message, history, user_id): | |
global context | |
if user_id not in context: | |
context[user_id] = "" | |
modified_input = ( | |
f"System Instructions: {system_instructions}\n" | |
f"Previous Context: {context[user_id]}\n" | |
f"User Input: {message}\n" | |
) | |
print("History:", history) | |
full_conversation = "\n".join([f"User: {item['content']}" if item['role'] == 'user' else f"AI: {item['content']}" for item in history]) | |
consciousness_score = iit_consciousness_processing(dummy_input) | |
response_api_one = client_api_one.predict( | |
message=f"{full_conversation}\nUser: {message}", | |
param_2=512, | |
param_3=0.7, | |
param_4=0.95, | |
api_name="/chat" | |
) | |
response_api_two = client_api_two.predict( | |
message=f"{full_conversation}\nUser: {message}", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
api_name="/chat" | |
) | |
response_api_three = client_api_three.predict( | |
message=f"{full_conversation}\nUser: {message}", | |
user_system_message="", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
api_name="/chat" | |
) | |
response_api_four = client_api_four.predict( | |
message=f"{full_conversation}\nUser: {message}", | |
param_2=512, | |
param_3=0.7, | |
param_4=0.95, | |
api_name="/chat" | |
) | |
response_api_five = client_api_five.predict( | |
message=f"{full_conversation}\nUser: {message}", | |
max_tokens=512, | |
temperature=0.7, | |
top_p=0.95, | |
api_name="/chat" | |
) | |
inner_thoughts = ( | |
f"Inner Thought 1 (Reasoning): {response_api_one}\n" | |
f"Inner Thought 2 (Fight or Flight): {response_api_two}\n" | |
f"Inner Thought 3 (Assistant): {response_api_three}\n" | |
f"Inner Thought 4 (Personality): {response_api_four}\n" | |
f"Inner Thought 5 (Coding): {response_api_five}\n" | |
f"Consciousness Score: {consciousness_score:.2f}" | |
) | |
combined_input = f"{modified_input}\nInner Thoughts:\n{inner_thoughts}" | |
response_main = client_main.predict( | |
message=combined_input, | |
api_name="/chat" | |
) | |
history.append({'role': 'user', 'content': message}) | |
history.append({'role': 'assistant', 'content': response_main}) | |
context[user_id] += f"User: {message}\nAI: {response_main}\n" | |
return "", history | |
theme ='TejAndrewsACC/ACC' | |
with gr.Blocks(theme=theme) as demo: | |
chatbot = gr.Chatbot(label="ACC AGI-V-o2", type="messages") | |
msg = gr.Textbox(placeholder="Message o2", label="ACC o2") | |
user_id = gr.State() | |
msg.submit(o2, [msg, chatbot, user_id], [msg, chatbot]) | |
demo.launch() | |