H / app.py
TejAndrewsACC's picture
Update app.py
041913e verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr
from huggingface_hub import InferenceClient
from llama_cpp import Llama
import spaces
# Initialize the InferenceClient
client = InferenceClient()
llm = Llama.from_pretrained(
repo_id="bartowski/perplexity-ai_r1-1776-distill-llama-70b-GGUF",
filename="perplexity-ai_r1-1776-distill-llama-70b-IQ4_NL.gguf",
)
# Fixed system message
SYSTEM_MESSAGE = """You are H, an artificial reasoning inteligence(AIR) created by the ACC(Algorithmic Computer-generated Consciousness).
"""
# RNN Model
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(RNNModel, self).__init__()
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(1, x.size(0), self.rnn.hidden_size).to(x.device)
out, _ = self.rnn(x, h0)
out = self.fc(out[:, -1, :]) # Get the last output
return out
# CNN Model
class CNNModel(nn.Module):
def __init__(self, num_classes):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 128)
self.fc2 = nn.Linear(128, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 32 * 8 * 8) # Flatten
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# NN Model (Feedforward Neural Network)
class NNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(NNModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# PHI Model (Example: Softmax-Based Regression)
class PHIModel(nn.Module):
def __init__(self, input_size, output_size):
super(PHIModel, self).__init__()
self.fc = nn.Linear(input_size, output_size)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.fc(x)
x = self.softmax(x)
return x
# Chatbot Response Logic
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
):
# Use fixed system message
messages = [{"role": "system", "content": SYSTEM_MESSAGE}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Use the client to get the chat completion
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message['choices'][0]['delta']['content']
response += token
yield response
# Gradio Chat Interface with Models
demo = gr.ChatInterface(
fn=respond,
type="messages",
chatbot=gr.Chatbot(
type="messages",
label="🟢H🟢",
placeholder="🟢-Hi, I'm H-🟢",
),
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="📏Maximum Response Length📏"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.3, step=0.1, label="👨‍🎨🎨Creativity🎨👨‍🎨"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🧠⚡️Neural Activity⚡️🧠")
],
theme=gr.themes.Ocean()
)
if __name__ == "__main__":
demo.launch(share=True)