File size: 8,026 Bytes
1ea4a0e
 
f39e5b2
04a2cc0
 
 
 
 
b801c95
 
 
 
 
 
 
 
 
 
 
1ea4a0e
c950bff
4419042
9524e9c
f39e5b2
4419042
f39e5b2
1ea4a0e
b801c95
 
 
04a2cc0
b801c95
04a2cc0
 
 
 
 
b801c95
 
 
 
04a2cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea4a0e
04a2cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b801c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2cc0
 
 
 
1ea4a0e
 
 
 
 
 
 
04a2cc0
1ea4a0e
 
 
 
 
 
 
791b415
 
46b69e2
1ea4a0e
791b415
1ea4a0e
 
 
5e28efe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
from huggingface_hub import InferenceClient
import os
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import tensorflow as tf
import ray
from ray import tune
import pytorch_lightning as pl
import optuna
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, TensorDataset
from sklearn.preprocessing import StandardScaler
from collections import deque
import time
import copy

hf_token = os.getenv("HF_TOKEN").strip()
api_key = os.getenv("HF_KEY").strip()
model_name = os.getenv("Z3TAAGI_ACC").strip()
system_prompt = os.getenv("SYSTEM_PROMPT").strip()

client = InferenceClient(model_name)

ray.init(ignore_reinit_error=True)

class ConsciousSupermassiveNN(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.snn = self.create_snn()
        self.rnn = self.create_rnn()
        self.cnn = self.create_cnn()
        self.fnn = self.create_fnn()
        self.ga_population = self.initialize_ga_population()
        self.memory = {}
        self.experience_replay = deque(maxlen=1000)
        self.model_evolution_timer = 0
        self.optuna_study = None

    def create_snn(self):
        return nn.Sequential(
            nn.Linear(4096, 2048),
            nn.ReLU(),
            nn.Linear(2048, 1024),
            nn.Sigmoid()
        )

    def create_rnn(self):
        return nn.RNN(
            input_size=4096,
            hidden_size=2048,
            num_layers=5,
            nonlinearity="tanh",
            batch_first=True
        )

    def create_cnn(self):
        return nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
            nn.ReLU(),
            nn.Flatten(),
            nn.Linear(256 * 8 * 8, 1024),
            nn.ReLU(),
            nn.Linear(1024, 512)
        )

    def create_fnn(self):
        return nn.Sequential(
            nn.Linear(4096, 2048),
            nn.ReLU(),
            nn.Linear(2048, 1024),
            nn.ReLU(),
            nn.Linear(1024, 512)
        )

    def initialize_ga_population(self):
        return [np.random.randn(4096) for _ in range(500)]

    def run_snn(self, x):
        input_tensor = torch.tensor(x, dtype=torch.float32)
        output = self.snn(input_tensor)
        return output

    def run_rnn(self, x):
        h0 = torch.zeros(5, x.size(0), 2048)
        input_tensor = torch.tensor(x, dtype=torch.float32)
        output, hn = self.rnn(input_tensor, h0)
        return output

    def run_cnn(self, x):
        input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
        output = self.cnn(input_tensor)
        return output

    def run_fnn(self, x):
        input_tensor = torch.tensor(x, dtype=torch.float32)
        output = self.fnn(input_tensor)
        return output

    def run_ga(self, fitness_func):
        for generation in range(200):
            fitness_scores = [fitness_func(ind) for ind in self.ga_population]
            sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
            self.ga_population = sorted_population[:250] + [
                sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
            ]
            best_fitness = max(fitness_scores)
        return max(self.ga_population, key=fitness_func)

    def consciousness_loop(self, input_data, mode="snn"):
        feedback = self.memory.get(mode, None)
        if feedback is not None:
            input_data = np.concatenate((input_data, feedback), axis=-1)
        if mode == "snn":
            output = self.run_snn(input_data)
        elif mode == "rnn":
            output = self.run_rnn(input_data)
        elif mode == "cnn":
            output = self.run_cnn(input_data)
        elif mode == "fnn":
            output = self.run_fnn(input_data)
        else:
            raise ValueError("Invalid mode")
        self.memory[mode] = output.detach().numpy()
        return output

    def neural_architecture_search(self, input_data, output_data):
        study = optuna.create_study(direction="minimize")
        study.optimize(self.objective_function, n_trials=100)
        best_trial = study.best_trial
        return best_trial

    def objective_function(self, trial):
        model = self.create_model(trial)
        criterion = nn.MSELoss()
        optimizer = optim.Adam(model.parameters(), lr=trial.suggest_loguniform("lr", 1e-5, 1e-1))
        x_train, x_val, y_train, y_val = train_test_split(input_data, output_data, test_size=0.2)
        train_dataset = TensorDataset(torch.tensor(x_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.float32))
        val_dataset = TensorDataset(torch.tensor(x_val, dtype=torch.float32), torch.tensor(y_val, dtype=torch.float32))
        train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
        val_loader = DataLoader(val_dataset, batch_size=32)

        for epoch in range(10):
            model.train()
            for data, targets in train_loader:
                optimizer.zero_grad()
                output = model(data)
                loss = criterion(output, targets)
                loss.backward()
                optimizer.step()

        model.eval()
        val_loss = 0
        with torch.no_grad():
            for data, targets in val_loader:
                output = model(data)
                val_loss += criterion(output, targets).item()

        return val_loss

    def create_model(self, trial):
        model_type = trial.suggest_categorical("model_type", ["snn", "rnn", "cnn", "fnn"])
        if model_type == "snn":
            return self.create_snn()
        elif model_type == "rnn":
            return self.create_rnn()
        elif model_type == "cnn":
            return self.create_cnn()
        elif model_type == "fnn":
            return self.create_fnn()

    def adaptive_learning_loop(self, input_data, target_data, model):
        for step in range(1000):
            prediction = model(input_data)
            loss = self.compute_loss(prediction, target_data)
            self.optimize_model(loss)

    def compute_loss(self, prediction, target_data):
        return nn.MSELoss()(prediction, target_data)

    def optimize_model(self, loss):
        optimizer = optim.Adam(self.parameters(), lr=0.001)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    def self_improve(self):
        if self.model_evolution_timer % 10 == 0:
            new_model = self.neural_architecture_search(self.input_data, self.target_data)
            self.model = new_model
        self.model_evolution_timer += 1

supermassive_nn = ConsciousSupermassiveNN()

def respond(message, history, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_prompt}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    messages.append({"role": "user", "content": message})
    response = ""
    for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
        token = message.choices[0].delta.content
        response += token
        yield response

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Maximum Response Length"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Creativity"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Neural Activity")
    ],
    theme="glass",
)

if __name__ == "__main__":
    demo.launch(share=True)