Spaces:
Sleeping
Sleeping
File size: 1,851 Bytes
fbebf66 c227032 fbebf66 c227032 fbebf66 c227032 fbebf66 c227032 fbebf66 c227032 fbebf66 c227032 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from enum import Enum
from typing import Dict, List, Optional, Any
import asyncio
class ConsciousnessState:
def __init__(self):
self.current_status = "active"
class NeuralProcessingUnit:
async def process_neural_task(self, neural_data):
# Process neural data
return {"neural_result": neural_data}
class MemoryHierarchy:
async def access_memory(self, memory_key):
# Access memory based on key
return {"memory_result": memory_key}
class ConsciousnessModule:
def __init__(self, module_id: int):
self.module_id = module_id
self.state = ConsciousnessState()
self.npu = NeuralProcessingUnit()
self.memory = MemoryHierarchy()
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
neural_processing = self.npu.process_neural_task(input_state['neural_data'])
memory_access = self.memory.access_memory(input_state['memory_key'])
results = await asyncio.gather(neural_processing, memory_access)
return self._integrate_consciousness_results(results)
def _integrate_consciousness_results(self, results: List[Any]) -> Dict[str, Any]:
neural_result, memory_result = results
return {
'consciousness_level': self._compute_consciousness_level(neural_result),
'integrated_state': self._merge_states(neural_result, memory_result),
'module_status': self.state.current_status
}
def _compute_consciousness_level(self, neural_result: Dict[str, Any]) -> float:
# Compute consciousness level based on neural results
return 0.85
def _merge_states(self, neural_result: Dict[str, Any], memory_result: Dict[str, Any]) -> Dict[str, Any]:
# Merge neural and memory states
return {**neural_result, **memory_result}
|