File size: 2,107 Bytes
fbebf66
 
 
 
 
 
 
 
 
 
 
 
c227032
 
 
 
 
 
 
 
fbebf66
 
 
 
 
 
c227032
fbebf66
 
 
 
c227032
fbebf66
 
 
 
 
 
 
c227032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from dataclasses import dataclass
import torch
import torch.nn as nn
from typing import List, Dict

@dataclass
class ExpertAllocation:
    expert_id: int
    load_factor: float
    specialization_score: float
    capacity_available: float

class TopologyAwareRouter:
    def __init__(self):
        pass

class LoadBalancer:
    def __init__(self):
        pass

class ExpertRoutingSystem:
    def __init__(self, num_experts: int = 128):
        self.num_experts = num_experts
        self.experts = self._initialize_experts()
        self.router = TopologyAwareRouter()
        self.load_balancer = LoadBalancer()

    def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
        task_requirements = self._analyze_task_requirements(input_pattern)
        available_experts = self._get_available_experts()
        return self._optimize_expert_allocation(task_requirements, available_experts)

    def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
        complexity = self._estimate_task_complexity(input_pattern)
        specialization_needs = self._determine_specialization_needs(input_pattern)
        return {
            'complexity': complexity,
            'specialization': specialization_needs,
            'resource_requirements': self._estimate_resource_needs(complexity)
        }

    def _initialize_experts(self):
        # Initialize experts
        return [i for i in range(self.num_experts)]

    def _get_available_experts(self):
        # Get available experts
        return self.experts

    def _optimize_expert_allocation(self, task_requirements, available_experts):
        # Optimize expert allocation
        return {expert: 1.0 for expert in available_experts[:3]}

    def _estimate_task_complexity(self, input_pattern):
        # Estimate task complexity
        return 0.5

    def _determine_specialization_needs(self, input_pattern):
        # Determine specialization needs
        return 0.7

    def _estimate_resource_needs(self, complexity):
        # Estimate resource needs
        return complexity * 2.0