File size: 1,372 Bytes
fbebf66
 
c227032
fbebf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c227032
fbebf66
 
 
 
 
 
c227032
fbebf66
 
 
c227032
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from enum import Enum
from dataclasses import dataclass
from typing import Dict, List

class EvaluationMetric(Enum):
    ACCURACY = "accuracy"
    CONSISTENCY = "consistency"
    ETHICAL_ALIGNMENT = "ethical_alignment"
    GOAL_PROGRESS = "goal_progress"
    SELF_IMPROVEMENT = "self_improvement"

@dataclass
class EvaluationResult:
    metrics: Dict[EvaluationMetric, float]
    recommendations: List[str]
    confidence_level: float

class SelfEvaluationSystem:
    def __init__(self):
        self.evaluation_history = []
        self.improvement_strategies = {}

    def evaluate(self, monitoring_results):
        evaluation = EvaluationResult(
            metrics={metric: 0.0 for metric in EvaluationMetric},
            recommendations=[],
            confidence_level=0.0
        )

        self._assess_performance(monitoring_results, evaluation)
        self._generate_recommendations(evaluation)
        self._update_history(evaluation)

        return evaluation

    def _assess_performance(self, monitoring_results, evaluation):
        # Placeholder for performance assessment logic
        pass

    def _generate_recommendations(self, evaluation):
        # Placeholder for recommendation generation logic
        pass

    def _update_history(self, evaluation):
        # Add the evaluation to history
        self.evaluation_history.append(evaluation)