Spaces:
Sleeping
Sleeping
File size: 1,372 Bytes
fbebf66 c227032 fbebf66 c227032 fbebf66 c227032 fbebf66 c227032 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from enum import Enum
from dataclasses import dataclass
from typing import Dict, List
class EvaluationMetric(Enum):
ACCURACY = "accuracy"
CONSISTENCY = "consistency"
ETHICAL_ALIGNMENT = "ethical_alignment"
GOAL_PROGRESS = "goal_progress"
SELF_IMPROVEMENT = "self_improvement"
@dataclass
class EvaluationResult:
metrics: Dict[EvaluationMetric, float]
recommendations: List[str]
confidence_level: float
class SelfEvaluationSystem:
def __init__(self):
self.evaluation_history = []
self.improvement_strategies = {}
def evaluate(self, monitoring_results):
evaluation = EvaluationResult(
metrics={metric: 0.0 for metric in EvaluationMetric},
recommendations=[],
confidence_level=0.0
)
self._assess_performance(monitoring_results, evaluation)
self._generate_recommendations(evaluation)
self._update_history(evaluation)
return evaluation
def _assess_performance(self, monitoring_results, evaluation):
# Placeholder for performance assessment logic
pass
def _generate_recommendations(self, evaluation):
# Placeholder for recommendation generation logic
pass
def _update_history(self, evaluation):
# Add the evaluation to history
self.evaluation_history.append(evaluation)
|