Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from enum import Enum | |
import torch | |
import numpy as np | |
from typing import Dict, List, Optional | |
class ConsciousnessState: | |
integration_level: float | |
phi_prime: float | |
awareness_vector: np.ndarray | |
emotional_state: np.ndarray | |
attention_focus: Dict[str, float] | |
temporal_continuity: float | |
class ConsciousnessLevel(Enum): | |
PROTO = "proto_consciousness" | |
FUNCTIONAL = "functional_consciousness" | |
REFLECTIVE = "reflective_consciousness" | |
INTEGRATED = "integrated_consciousness" | |
from typing import Dict, List, Any | |
import asyncio | |
import torch | |
class ConsciousnessKernel: | |
def __init__(self): | |
self.awareness_module = nn.Sequential( | |
nn.Linear(768, 512), | |
nn.ReLU(), | |
nn.Linear(512, 256) | |
) | |
self.integration_module = nn.Linear(256, 128) | |
self.state_history = [] | |
def process_consciousness_cycle(self, input_data: Dict[str, Any]) -> Dict[str, Any]: | |
awareness_state = self._process_awareness(input_data) | |
integrated_state = self._integrate_information(awareness_state) | |
self._update_history(integrated_state) | |
return { | |
'current_state': integrated_state, | |
'awareness_level': self._calculate_awareness_level(integrated_state), | |
'consciousness_metrics': self._compute_phi_metrics(integrated_state) | |
} | |
self.awareness_engine = AwarenessEngine() | |
self.integration_manager = IntegrationManager() | |
self.self_model = DynamicSelfModel() | |
self.experience_simulator = ExperienceSimulator() | |
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
awareness = await self.awareness_engine.process(input_state) | |
integrated_state = await self.integration_manager.integrate(awareness) | |
self_update = await self.self_model.update(integrated_state) | |
experience = await self.experience_simulator.simulate( | |
awareness=awareness, | |
integrated_state=integrated_state, | |
self_model=self_update | |
) | |
return self._generate_conscious_output(experience) | |
def _initialize_consciousness_state(self) -> ConsciousnessState: | |
return ConsciousnessState( | |
integration_level=0.0, | |
phi_prime=0.0, | |
awareness_vector=np.zeros(self.awareness_dimension), | |
emotional_state=np.zeros(self.emotional_dimension), | |
attention_focus={}, | |
temporal_continuity=0.0 | |
) | |
def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
phi_value = self.phi_prime_calculator.compute(input_state) | |
attention_state = self.attention_system.allocate(input_state) | |
meta_state = self.meta_monitor.evaluate(input_state) | |
phenomenological_experience = self.phenomenological_simulator.simulate( | |
phi_value, | |
attention_state, | |
meta_state | |
) | |
return self._integrate_consciousness_state(phenomenological_experience) |