HIM-self / src /core /consciousness_kernel.py
TeleologyHI
Update HIM implementation with consciousness framework
3c02ff0
raw
history blame
3.14 kB
from dataclasses import dataclass
from enum import Enum
import torch
import numpy as np
from typing import Dict, List, Optional
@dataclass
class ConsciousnessState:
integration_level: float
phi_prime: float
awareness_vector: np.ndarray
emotional_state: np.ndarray
attention_focus: Dict[str, float]
temporal_continuity: float
class ConsciousnessLevel(Enum):
PROTO = "proto_consciousness"
FUNCTIONAL = "functional_consciousness"
REFLECTIVE = "reflective_consciousness"
INTEGRATED = "integrated_consciousness"
from typing import Dict, List, Any
import asyncio
import torch
class ConsciousnessKernel:
def __init__(self):
self.awareness_module = nn.Sequential(
nn.Linear(768, 512),
nn.ReLU(),
nn.Linear(512, 256)
)
self.integration_module = nn.Linear(256, 128)
self.state_history = []
def process_consciousness_cycle(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
awareness_state = self._process_awareness(input_data)
integrated_state = self._integrate_information(awareness_state)
self._update_history(integrated_state)
return {
'current_state': integrated_state,
'awareness_level': self._calculate_awareness_level(integrated_state),
'consciousness_metrics': self._compute_phi_metrics(integrated_state)
}
self.awareness_engine = AwarenessEngine()
self.integration_manager = IntegrationManager()
self.self_model = DynamicSelfModel()
self.experience_simulator = ExperienceSimulator()
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
awareness = await self.awareness_engine.process(input_state)
integrated_state = await self.integration_manager.integrate(awareness)
self_update = await self.self_model.update(integrated_state)
experience = await self.experience_simulator.simulate(
awareness=awareness,
integrated_state=integrated_state,
self_model=self_update
)
return self._generate_conscious_output(experience)
def _initialize_consciousness_state(self) -> ConsciousnessState:
return ConsciousnessState(
integration_level=0.0,
phi_prime=0.0,
awareness_vector=np.zeros(self.awareness_dimension),
emotional_state=np.zeros(self.emotional_dimension),
attention_focus={},
temporal_continuity=0.0
)
def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
phi_value = self.phi_prime_calculator.compute(input_state)
attention_state = self.attention_system.allocate(input_state)
meta_state = self.meta_monitor.evaluate(input_state)
phenomenological_experience = self.phenomenological_simulator.simulate(
phi_value,
attention_state,
meta_state
)
return self._integrate_consciousness_state(phenomenological_experience)