HIM-self / src /core /expert_routing.py
Takk8IS
Initial HIM implementation
fbebf66
raw
history blame
1.25 kB
from dataclasses import dataclass
import torch
import torch.nn as nn
from typing import List, Dict
@dataclass
class ExpertAllocation:
expert_id: int
load_factor: float
specialization_score: float
capacity_available: float
class ExpertRoutingSystem:
def __init__(self, num_experts: int = 128):
self.num_experts = num_experts
self.experts = self._initialize_experts()
self.router = TopologyAwareRouter()
self.load_balancer = LoadBalancer()
def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]:
task_requirements = self._analyze_task_requirements(input_pattern)
available_experts = self._get_available_experts()
return self._optimize_expert_allocation(task_requirements, available_experts)
def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]:
complexity = self._estimate_task_complexity(input_pattern)
specialization_needs = self._determine_specialization_needs(input_pattern)
return {
'complexity': complexity,
'specialization': specialization_needs,
'resource_requirements': self._estimate_resource_needs(complexity)
}