Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from typing import List, Dict | |
class ExpertAllocation: | |
expert_id: int | |
load_factor: float | |
specialization_score: float | |
capacity_available: float | |
class ExpertRoutingSystem: | |
def __init__(self, num_experts: int = 128): | |
self.num_experts = num_experts | |
self.experts = self._initialize_experts() | |
self.router = TopologyAwareRouter() | |
self.load_balancer = LoadBalancer() | |
def allocate_experts(self, input_pattern: torch.Tensor) -> Dict[int, float]: | |
task_requirements = self._analyze_task_requirements(input_pattern) | |
available_experts = self._get_available_experts() | |
return self._optimize_expert_allocation(task_requirements, available_experts) | |
def _analyze_task_requirements(self, input_pattern: torch.Tensor) -> Dict[str, float]: | |
complexity = self._estimate_task_complexity(input_pattern) | |
specialization_needs = self._determine_specialization_needs(input_pattern) | |
return { | |
'complexity': complexity, | |
'specialization': specialization_needs, | |
'resource_requirements': self._estimate_resource_needs(complexity) | |
} |