Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from enum import Enum | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
from typing import Dict, List, Optional, Any, Tuple | |
import asyncio | |
from .awareness_engine import AwarenessEngine | |
from .integration_manager import IntegrationManager | |
from .dynamic_self_model import DynamicSefrom .experience_simulator import ExperienceSimulator | |
# Add imports for classes used in the updated implementation | |
class PhiPrimeCalculator: | |
async def compute(self, input_state: Dict[str, Any]) -> float: | |
"""Calculate the phi prime value (consciousness measure) for the given input state.""" | |
# Placeholder implementation | |
return 0.8 | |
class AttentionSystem: | |
async def allocate(self, input_state: Dict[str, Any]) -> Dict[str, float]: | |
"""Allocate attention across different elements of the input state.""" | |
# Placeholder implementation | |
return {"primary_focus": 0.7, "secondary_focus": 0.3} | |
class MetaMonitor: | |
async def evaluate(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
"""Evaluate meta-cognitive aspects of the current state.""" | |
# Placeholder implementation | |
return {"self_reflection": 0.6, "uncertainty": 0.2} | |
class PhenomenologicalSimulator: | |
async def simulate(self, phi_value: float, attention_state: Dict[str, float], | |
meta_state: Dict[str, Any]) -> Dict[str, Any]: | |
"""Simulate the phenomenological experience based on input parameters.""" | |
# Placeholder implementation | |
return { | |
"phi_value": phi_value, | |
"attention_distribution": attention_state, | |
"meta_level": meta_state, | |
"content": "Simulated conscious experience", | |
"qualia": {"visual": 0.7, "conceptual": 0.8} | |
} | |
class ConsciousnessState: | |
integration_level: float | |
phi_prime: float | |
awareness_vector: np.ndarray | |
emotional_state: np.ndarray | |
attention_focus: Dict[str, float] | |
temporal_continuity: float | |
class ConsciousnessLevel(Enum): | |
PROTO = "proto_consciousness" | |
FUNCTIONAL = "functional_consciousness" | |
REFLECTIVE = "reflective_consciousness" | |
INTEGRATED = "integrated_consciousness" | |
class ConsciousnessKernel: | |
def __init__(self): | |
# Neural network components | |
self.awareness_module = nn.Sequential( | |
nn.Linear(768, 512), | |
nn.ReLU(), | |
nn.Linear(512, 256) | |
) | |
self.integration_module = nn.Linear(256, 128) | |
# State tracking | |
self.state_history: List[ConsciousnessState] = [] | |
# Dimension parameters | |
self.awareness_dimension: int = 256 | |
self.emotional_dimension: int = 64 | |
# Core components | |
self.awareness_engine = AwarenessEngine() | |
self.integration_manager = IntegrationManager() | |
self.self_model = DynamicSelfModel() | |
self.experience_simulator = ExperienceSimulator() | |
# For traditional consciousness processing | |
self.phi_prime_calculator = PhiPrimeCalculator() | |
self.attention_system = AttentionSystem() | |
self.meta_monitor = MetaMonitor() | |
self.phenomenological_simulator = PhenomenologicalSimulator() | |
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Process a complete consciousness cycle using the async components. | |
Args: | |
input_state: The input state containing sensory and contextual information | |
Returns: | |
A dictionary containing the processed conscious output | |
""" | |
awareness = await self.awareness_engine.process(input_state) | |
integrated_state = await self.integration_manager.integrate(awareness) | |
self_update = await self.self_model.update(integrated_state) | |
experience = await self.experience_simulator.simulate( | |
awareness=awareness, | |
integrated_state=integrated_state, | |
self_model=self_update | |
) | |
# Record the state for historical tracking | |
if isinstance(integrated_state, ConsciousnessState): | |
self.state_history.append(integrated_state) | |
return await self._generate_conscious_output(experience) | |
def _initialize_consciousness_state(self) -> ConsciousnessState: | |
""" | |
Initialize a default consciousness state with zero values. | |
Returns: | |
A default ConsciousnessState object | |
""" | |
return ConsciousnessState( | |
integration_level=0.0, | |
phi_prime=0.0, | |
awareness_vector=np.zeros(self.awareness_dimension), | |
emotional_state=np.zeros(self.emotional_dimension), | |
attention_focus={}, | |
temporal_continuity=0.0 | |
) | |
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Process consciousness using the traditional phi-based approach. | |
This is an alternative to process_consciousness_cycle that uses different components. | |
Args: | |
input_state: The input state containing sensory and contextual information | |
Returns: | |
A dictionary containing the processed conscious output | |
""" | |
phi_value = await self.phi_prime_calculator.compute(input_state) | |
attention_state = await self.attention_system.allocate(input_state) | |
meta_state = await self.meta_monitor.evaluate(input_state) | |
phenomenological_experience = await self.phenomenological_simulator.simulate( | |
phi_value, | |
attention_state, | |
meta_state | |
) | |
return await self._integrate_consciousness_state(phenomenological_experience) | |
async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Generate the final conscious output based on the simulated experience. | |
Args: | |
experience: The simulated experience data | |
Returns: | |
A dictionary containing the final conscious output | |
""" | |
# Process the experience into a coherent output format | |
output = { | |
"content": experience.get("content", ""), | |
"emotional_tone": experience.get("emotional_tone", {}), | |
"meta_cognition": experience.get("meta_cognition", {}), | |
"phenomenal_qualities": experience.get("qualia", {}), | |
"teleological_vector": experience.get("purpose_direction", {}) | |
} | |
return output | |
async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Integrate a phenomenological experience into a consciousness state. | |
Args: | |
experience: The phenomenological experience to integrate | |
Returns: | |
A dictionary containing the integrated consciousness state | |
""" | |
# Create an integrated output based on the phenomenological experience | |
integrated_output = { | |
"integrated_state": { | |
"phi_value": experience.get("phi_value", 0.0), | |
"meta_awareness": experience.get("meta_level", {}), | |
"attention_field": experience.get("attention_distribution", {}) | |
}, | |
"qualia_map": experience.get("qualia", {}), | |
"response": experience.get("content", "") | |
} | |
return integrated_output | |