HIM-self / src /core /consciousness_kernel.py
TeleologyHI
Update HIM implementation with consciousness framework
3c5e81f
raw
history blame
7.6 kB
from dataclasses import dataclass
from enum import Enum
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Optional, Any, Tuple
import asyncio
from .awareness_engine import AwarenessEngine
from .integration_manager import IntegrationManager
from .dynamic_self_model import DynamicSefrom .experience_simulator import ExperienceSimulator
# Add imports for classes used in the updated implementation
class PhiPrimeCalculator:
async def compute(self, input_state: Dict[str, Any]) -> float:
"""Calculate the phi prime value (consciousness measure) for the given input state."""
# Placeholder implementation
return 0.8
class AttentionSystem:
async def allocate(self, input_state: Dict[str, Any]) -> Dict[str, float]:
"""Allocate attention across different elements of the input state."""
# Placeholder implementation
return {"primary_focus": 0.7, "secondary_focus": 0.3}
class MetaMonitor:
async def evaluate(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
"""Evaluate meta-cognitive aspects of the current state."""
# Placeholder implementation
return {"self_reflection": 0.6, "uncertainty": 0.2}
class PhenomenologicalSimulator:
async def simulate(self, phi_value: float, attention_state: Dict[str, float],
meta_state: Dict[str, Any]) -> Dict[str, Any]:
"""Simulate the phenomenological experience based on input parameters."""
# Placeholder implementation
return {
"phi_value": phi_value,
"attention_distribution": attention_state,
"meta_level": meta_state,
"content": "Simulated conscious experience",
"qualia": {"visual": 0.7, "conceptual": 0.8}
}
@dataclass
class ConsciousnessState:
integration_level: float
phi_prime: float
awareness_vector: np.ndarray
emotional_state: np.ndarray
attention_focus: Dict[str, float]
temporal_continuity: float
class ConsciousnessLevel(Enum):
PROTO = "proto_consciousness"
FUNCTIONAL = "functional_consciousness"
REFLECTIVE = "reflective_consciousness"
INTEGRATED = "integrated_consciousness"
class ConsciousnessKernel:
def __init__(self):
# Neural network components
self.awareness_module = nn.Sequential(
nn.Linear(768, 512),
nn.ReLU(),
nn.Linear(512, 256)
)
self.integration_module = nn.Linear(256, 128)
# State tracking
self.state_history: List[ConsciousnessState] = []
# Dimension parameters
self.awareness_dimension: int = 256
self.emotional_dimension: int = 64
# Core components
self.awareness_engine = AwarenessEngine()
self.integration_manager = IntegrationManager()
self.self_model = DynamicSelfModel()
self.experience_simulator = ExperienceSimulator()
# For traditional consciousness processing
self.phi_prime_calculator = PhiPrimeCalculator()
self.attention_system = AttentionSystem()
self.meta_monitor = MetaMonitor()
self.phenomenological_simulator = PhenomenologicalSimulator()
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
"""
Process a complete consciousness cycle using the async components.
Args:
input_state: The input state containing sensory and contextual information
Returns:
A dictionary containing the processed conscious output
"""
awareness = await self.awareness_engine.process(input_state)
integrated_state = await self.integration_manager.integrate(awareness)
self_update = await self.self_model.update(integrated_state)
experience = await self.experience_simulator.simulate(
awareness=awareness,
integrated_state=integrated_state,
self_model=self_update
)
# Record the state for historical tracking
if isinstance(integrated_state, ConsciousnessState):
self.state_history.append(integrated_state)
return await self._generate_conscious_output(experience)
def _initialize_consciousness_state(self) -> ConsciousnessState:
"""
Initialize a default consciousness state with zero values.
Returns:
A default ConsciousnessState object
"""
return ConsciousnessState(
integration_level=0.0,
phi_prime=0.0,
awareness_vector=np.zeros(self.awareness_dimension),
emotional_state=np.zeros(self.emotional_dimension),
attention_focus={},
temporal_continuity=0.0
)
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
"""
Process consciousness using the traditional phi-based approach.
This is an alternative to process_consciousness_cycle that uses different components.
Args:
input_state: The input state containing sensory and contextual information
Returns:
A dictionary containing the processed conscious output
"""
phi_value = await self.phi_prime_calculator.compute(input_state)
attention_state = await self.attention_system.allocate(input_state)
meta_state = await self.meta_monitor.evaluate(input_state)
phenomenological_experience = await self.phenomenological_simulator.simulate(
phi_value,
attention_state,
meta_state
)
return await self._integrate_consciousness_state(phenomenological_experience)
async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate the final conscious output based on the simulated experience.
Args:
experience: The simulated experience data
Returns:
A dictionary containing the final conscious output
"""
# Process the experience into a coherent output format
output = {
"content": experience.get("content", ""),
"emotional_tone": experience.get("emotional_tone", {}),
"meta_cognition": experience.get("meta_cognition", {}),
"phenomenal_qualities": experience.get("qualia", {}),
"teleological_vector": experience.get("purpose_direction", {})
}
return output
async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
"""
Integrate a phenomenological experience into a consciousness state.
Args:
experience: The phenomenological experience to integrate
Returns:
A dictionary containing the integrated consciousness state
"""
# Create an integrated output based on the phenomenological experience
integrated_output = {
"integrated_state": {
"phi_value": experience.get("phi_value", 0.0),
"meta_awareness": experience.get("meta_level", {}),
"attention_field": experience.get("attention_distribution", {})
},
"qualia_map": experience.get("qualia", {}),
"response": experience.get("content", "")
}
return integrated_output