Spaces:
Sleeping
Sleeping
from enum import Enum | |
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Any | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
class SignLevel(Enum): | |
SYNTACTIC = "syntactic" | |
SEMANTIC = "semantic" | |
PRAGMATIC = "pragmatic" | |
class SemioticState: | |
sign_level: SignLevel | |
meaning_vector: np.ndarray | |
context_relations: Dict[str, float] | |
interpretation_confidence: float | |
sign_vector: np.ndarray | |
context_embedding: np.ndarray | |
semantic_relations: Dict[str, float] | |
class SemioticProcessor: | |
def __init__(self): | |
self.sign_encoder = nn.Sequential( | |
nn.Linear(768, 256), | |
nn.ReLU(), | |
nn.Linear(256, 128) | |
) | |
self.network_builder = SemioticNetworkBuilder() | |
self.interpreter = SignInterpreter() | |
self.generator = SignGenerator() | |
self.meaning_network = {} | |
def process_signs(self, input_data: Dict[str, Any]) -> SemioticState: | |
network = self.network_builder.construct(input_data) | |
interpretation = self.interpreter.interpret(network) | |
if self._requires_generation(interpretation): | |
generated_signs = self.generator.create_signs(interpretation) | |
return self._integrate_semiotic_state(interpretation, generated_signs) | |
return self._create_semiotic_state(interpretation) |