Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from typing import Dict, Any | |
from ..core.consciousness_kernel import ConsciousnessKernel | |
from ..core.emotional_intelligence import EmotionalProcessor | |
from ..core.theory_of_mind import TheoryOfMind | |
from ..core.semiotic_processor import SemioticProcessor | |
class HIMModel(nn.Module): | |
def __init__(self, config: Dict[str, Any]): | |
super().__init__() | |
self.config = config | |
self.consciousness_kernel = ConsciousnessKernel() | |
self.emotional_processor = EmotionalProcessor() | |
self.theory_of_mind = TheoryOfMind() | |
self.semiotic_processor = SemioticProcessor() | |
def generate_response(self, input_data: Dict[str, Any]) -> Dict[str, Any]: | |
consciousness_state = self.consciousness_kernel.process_consciousness_cycle(input_data) | |
emotional_context = self.emotional_processor.process_emotional_context(input_data) | |
social_understanding = self.theory_of_mind.model_agent_mind(input_data) | |
semiotic_analysis = self.semiotic_processor.process_signs(input_data) | |
return self._integrate_outputs( | |
consciousness_state, | |
emotional_context, | |
social_understanding, | |
semiotic_analysis | |
) | |
def _integrate_outputs(self, *states) -> Dict[str, Any]: | |
# Integration implementation | |
return { | |
"response": "Integrated response based on multiple processing layers", | |
"consciousness_state": states[0], | |
"emotional_context": states[1], | |
"social_understanding": states[2], | |
"semiotic_analysis": states[3] | |
} |