Spaces:
Sleeping
Sleeping
class SymbolicProcessor: | |
def process(self, input_data): | |
# Implement symbolic processing logic | |
return {"symbolic_result": input_data} | |
class NeuralProcessor: | |
def process(self, input_data): | |
# Implement neural processing logic | |
return {"neural_result": input_data} | |
class IntegrationLayer: | |
def __init__(self): | |
self.symbolic_processor = SymbolicProcessor() | |
self.neural_processor = NeuralProcessor() | |
self.semiotic_processor = SemioticProcessor() | |
def process_input(self, input_data): | |
# Bidirectional processing between symbolic and subsymbolic systems | |
neural_output = self.neural_processor.process(input_data) | |
symbolic_output = self.symbolic_processor.process(input_data) | |
semiotic_interpretation = self.semiotic_processor.interpret( | |
neural_output, | |
symbolic_output | |
) | |
return self._integrate_outputs( | |
neural_output, | |
symbolic_output, | |
semiotic_interpretation | |
) | |
def _integrate_outputs(self, neural_output, symbolic_output, semiotic_interpretation): | |
# Implement integration logic | |
return { | |
"neural": neural_output, | |
"symbolic": symbolic_output, | |
"semiotic": semiotic_interpretation | |
} | |
class SemioticProcessor: | |
def __init__(self): | |
self.sign_levels = ['syntactic', 'semantic', 'pragmatic'] | |
def interpret(self, neural_output, symbolic_output): | |
# Multi-level sign processing implementation | |
return {"interpretation": self.sign_levels} | |