Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import Any, Dict, List | |
# Define the missing classes | |
class MultiModalEncoder: | |
def encode(self, input_data: Any) -> Dict[str, Any]: | |
# Implementation would go here | |
return {} | |
class ContextIntegrator: | |
def integrate(self, perception: Dict[str, Any]) -> Dict[str, Any]: | |
# Implementation would go here | |
return {} | |
class ConsciousnessFilter: | |
def filter(self, context: Dict[str, Any]) -> Any: | |
# Implementation would go here | |
return {} | |
class ReflectiveAnalyzer: | |
def analyze(self, filtered_state: Any) -> 'ProcessingState': | |
# Implementation would go here | |
return ProcessingState({}, {}, 0.0, {}) | |
class ProcessingState: | |
perception_data: Dict[str, Any] | |
context: Dict[str, Any] | |
consciousness_level: float | |
attention_focus: Dict[str, float] | |
class ProcessingPipeline: | |
def __init__(self): | |
self.perception_encoder = MultiModalEncoder() | |
self.context_integrator = ContextIntegrator() | |
self.consciousness_filter = ConsciousnessFilter() | |
self.reflective_analyzer = ReflectiveAnalyzer() | |
def process(self, input_data: Any) -> ProcessingState: | |
perception = self.perception_encoder.encode(input_data) | |
context = self.context_integrator.integrate(perception) | |
filtered_state = self.consciousness_filter.filter(context) | |
return self.reflective_analyzer.analyze(filtered_state) | |