Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
62a3dd9
1
Parent(s):
80e5e3d
up
Browse files
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/consciousness_kernel.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
2 |
+
"""
|
3 |
+
Process a complete consciousness cycle using the async components.
|
4 |
+
|
5 |
+
Args:
|
6 |
+
input_state: The input state containing sensory and contextual information
|
7 |
+
|
8 |
+
Returns:
|
9 |
+
A dictionary containing the processed conscious output
|
10 |
+
"""
|
11 |
+
# Process input through awareness engine to get awareness state
|
12 |
+
awareness_state: AwarenessState = await self.awareness_engine.process(input_state)
|
13 |
+
|
14 |
+
# Integrate awareness state to get integrated state
|
15 |
+
integrated_state: IntegratedState = await self.integration_manager.integrate(awareness_state)
|
16 |
+
|
17 |
+
# Update self model with integrated state
|
18 |
+
self_update = await self.self_model.update(integrated_state)
|
19 |
+
|
20 |
+
# Simulate experience with awareness, integrated state and self model
|
21 |
+
experience = await self.experience_simulator.simulate(
|
22 |
+
awareness=awareness_state,
|
23 |
+
integrated_state=integrated_state,
|
24 |
+
self_model=self_update
|
25 |
+
)
|
26 |
+
|
27 |
+
# Record the state for historical tracking
|
28 |
+
# Use ConsciousnessState for our internal history tracking
|
29 |
+
consciousness_state = self._convert_to_consciousness_state(integrated_state)
|
30 |
+
self.state_history.append(consciousness_state)
|
31 |
+
return await self._generate_conscious_output(experience)
|
32 |
+
|
33 |
+
def _convert_to_consciousness_state(self, integrated_state: IntegratedState) -> ConsciousnessState:
|
34 |
+
"""
|
35 |
+
Convert an IntegratedState to our internal ConsciousnessState format.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
integrated_state: The integrated state to convert
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
A ConsciousnessState object
|
42 |
+
"""
|
43 |
+
# Extract relevant information from integrated state
|
44 |
+
primary = integrated_state.primary_awareness
|
45 |
+
|
46 |
+
# Map awareness level to phi_prime value
|
47 |
+
awareness_to_phi = {
|
48 |
+
AwarenessLevel.UNCONSCIOUS: 0.1,
|
49 |
+
AwarenessLevel.SUBCONSCIOUS: 0.3,
|
50 |
+
AwarenessLevel.CONSCIOUS: 0.5,
|
51 |
+
AwarenessLevel.SELF_AWARE: 0.7,
|
52 |
+
AwarenessLevel.TRANSCENDENT: 0.9
|
53 |
+
}
|
54 |
+
|
55 |
+
phi_prime = awareness_to_phi.get(primary.level, 0.5)
|
56 |
+
|
57 |
+
# Create awareness vector from primary cognition state
|
58 |
+
awareness_vector = np.zeros(self.awareness_dimension)
|
59 |
+
|
60 |
+
# Create emotional state
|
61 |
+
emotional_state = np.zeros(self.emotional_dimension)
|
62 |
+
emotional_state[0] = primary.emotional_valence # Set first dimension to valence
|
63 |
+
|
64 |
+
# Extract attention focus from cognition state
|
65 |
+
attention_focus = primary.cognition_state.get('attention_focus', {})
|
66 |
+
|
67 |
+
# Create consciousness state
|
68 |
+
return ConsciousnessState(
|
69 |
+
integration_level=integrated_state.integration_coherence,
|
70 |
+
phi_prime=phi_prime,
|
71 |
+
awareness_vector=awareness_vector,
|
72 |
+
emotional_state=emotional_state,
|
73 |
+
attention_focus=attention_focus,
|
74 |
+
temporal_continuity=0.8 # Default value
|
75 |
+
)
|
76 |
+
|
77 |
+
def _initialize_consciousness_state(self) -> ConsciousnessState:
|
78 |
+
"""
|
79 |
+
Initialize a default consciousness state with zero values.
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
A default ConsciousnessState object
|
83 |
+
"""
|
84 |
+
return ConsciousnessState(
|
85 |
+
integration_level=0.0,
|
86 |
+
phi_prime=0.0,
|
87 |
+
awareness_vector=np.zeros(self.awareness_dimension),
|
88 |
+
emotional_state=np.zeros(self.emotional_dimension),
|
89 |
+
attention_focus={},
|
90 |
+
temporal_continuity=0.0
|
91 |
+
)
|
src/core/consciousness_kernel.py
CHANGED
@@ -7,7 +7,7 @@ from typing import Dict, List, Optional, Any, Tuple
|
|
7 |
import asyncio
|
8 |
|
9 |
from .awareness_engine import AwarenessEngine
|
10 |
-
from .integration_manager import IntegrationManager
|
11 |
from .dynamic_self_model import DynamicSelfModel
|
12 |
from .experience_simulator import ExperienceSimulator
|
13 |
|
|
|
7 |
import asyncio
|
8 |
|
9 |
from .awareness_engine import AwarenessEngine
|
10 |
+
from .integration_manager import IntegrationManager, AwarenessState, IntegratedState, AwarenessLevel
|
11 |
from .dynamic_self_model import DynamicSelfModel
|
12 |
from .experience_simulator import ExperienceSimulator
|
13 |
|
src/core/experience_simulator.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
-
from typing import Dict, Any, List
|
2 |
import numpy as np
|
|
|
3 |
|
4 |
class PhenomenologyEngine:
|
5 |
"""Generates phenomenological states from awareness and integrated states."""
|
6 |
|
7 |
async def generate_state(
|
8 |
self,
|
9 |
-
awareness:
|
10 |
-
integrated_state:
|
11 |
) -> Dict[str, Any]:
|
12 |
"""
|
13 |
Generate a phenomenological state from awareness and integrated state.
|
@@ -20,10 +21,10 @@ class PhenomenologyEngine:
|
|
20 |
A dictionary containing the phenomenological state
|
21 |
"""
|
22 |
return {
|
23 |
-
"conscious_content": awareness
|
24 |
-
"perceptual_field": awareness
|
25 |
-
"cognitive_state": integrated_state
|
26 |
-
"affective_tone":
|
27 |
}
|
28 |
|
29 |
class QualiaGenerator:
|
@@ -99,10 +100,23 @@ class ExperienceSimulator:
|
|
99 |
self.qualia_generator = QualiaGenerator()
|
100 |
self.temporal_integrator = TemporalIntegrator()
|
101 |
|
102 |
-
async def simulate(
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
phenomenological_state = await self.phenomenology_engine.generate_state(
|
108 |
awareness,
|
@@ -116,7 +130,7 @@ class ExperienceSimulator:
|
|
116 |
|
117 |
temporal_context = await self.temporal_integrator.integrate(
|
118 |
qualia,
|
119 |
-
self_model
|
120 |
)
|
121 |
|
122 |
return {
|
|
|
1 |
+
from typing import Dict, Any, List, Optional
|
2 |
import numpy as np
|
3 |
+
from .integration_manager import AwarenessState, IntegratedState
|
4 |
|
5 |
class PhenomenologyEngine:
|
6 |
"""Generates phenomenological states from awareness and integrated states."""
|
7 |
|
8 |
async def generate_state(
|
9 |
self,
|
10 |
+
awareness: AwarenessState,
|
11 |
+
integrated_state: IntegratedState
|
12 |
) -> Dict[str, Any]:
|
13 |
"""
|
14 |
Generate a phenomenological state from awareness and integrated state.
|
|
|
21 |
A dictionary containing the phenomenological state
|
22 |
"""
|
23 |
return {
|
24 |
+
"conscious_content": getattr(awareness, "cognition_state", {}),
|
25 |
+
"perceptual_field": getattr(awareness, "perception_data", {}),
|
26 |
+
"cognitive_state": getattr(integrated_state, "cognitive_state", {}),
|
27 |
+
"affective_tone": {"valence": awareness.emotional_valence}
|
28 |
}
|
29 |
|
30 |
class QualiaGenerator:
|
|
|
100 |
self.qualia_generator = QualiaGenerator()
|
101 |
self.temporal_integrator = TemporalIntegrator()
|
102 |
|
103 |
+
async def simulate(
|
104 |
+
self,
|
105 |
+
awareness: AwarenessState,
|
106 |
+
integrated_state: IntegratedState,
|
107 |
+
self_model: Dict[str, Any]
|
108 |
+
) -> Dict[str, Any]:
|
109 |
+
"""
|
110 |
+
Simulate subjective experience based on awareness and integrated states.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
awareness: The current awareness state
|
114 |
+
integrated_state: The integrated cognitive state
|
115 |
+
self_model: The agent's self-model state
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
Dictionary containing the simulated subjective experience
|
119 |
+
"""
|
120 |
|
121 |
phenomenological_state = await self.phenomenology_engine.generate_state(
|
122 |
awareness,
|
|
|
130 |
|
131 |
temporal_context = await self.temporal_integrator.integrate(
|
132 |
qualia,
|
133 |
+
self_model.get('temporal_history', [])
|
134 |
)
|
135 |
|
136 |
return {
|