TeleologyHI commited on
Commit
8db4a14
·
1 Parent(s): f599e3d
src/core/awareness_engine.py CHANGED
@@ -2,7 +2,7 @@ from typing import Dict, Any
2
  import torch
3
  import torch.nn as nn
4
  import numpy as np
5
- from .states import AwarenessState
6
 
7
  class AwarenessEngine:
8
  def __init__(self):
@@ -15,14 +15,27 @@ class AwarenessEngine:
15
  async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
16
  attention_vector = self._compute_attention(input_state)
17
  awareness_level = self._calculate_awareness(attention_vector)
 
18
 
19
  return AwarenessState(
20
  attention_vector=attention_vector.detach().numpy(),
21
  awareness_level=awareness_level,
22
  cognitive_state=self._process_cognitive_state(input_state),
23
  emotional_valence=self._compute_emotional_valence(input_state),
24
- consciousness_level=0.8
 
25
  )
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
28
  return torch.ones(256)
 
2
  import torch
3
  import torch.nn as nn
4
  import numpy as np
5
+ from .states import AwarenessState, AwarenessLevel
6
 
7
  class AwarenessEngine:
8
  def __init__(self):
 
15
  async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
16
  attention_vector = self._compute_attention(input_state)
17
  awareness_level = self._calculate_awareness(attention_vector)
18
+ level = self._determine_awareness_level(awareness_level)
19
 
20
  return AwarenessState(
21
  attention_vector=attention_vector.detach().numpy(),
22
  awareness_level=awareness_level,
23
  cognitive_state=self._process_cognitive_state(input_state),
24
  emotional_valence=self._compute_emotional_valence(input_state),
25
+ consciousness_level=0.8,
26
+ level=level
27
  )
28
+
29
+ def _determine_awareness_level(self, awareness_level: float) -> AwarenessLevel:
30
+ if awareness_level > 0.8:
31
+ return AwarenessLevel.TRANSCENDENT
32
+ elif awareness_level > 0.6:
33
+ return AwarenessLevel.INTEGRATED
34
+ elif awareness_level > 0.4:
35
+ return AwarenessLevel.REFLECTIVE
36
+ elif awareness_level > 0.2:
37
+ return AwarenessLevel.PERCEPTUAL
38
+ return AwarenessLevel.BASIC
39
 
40
  def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
41
  return torch.ones(256)
src/core/integration_manager.py CHANGED
@@ -61,10 +61,10 @@ class IntegratedState(Generic[T]):
61
  teleological_vector: Optional[Dict[str, float]] = None
62
 
63
 
64
- from typing import Dict, Any
65
  import torch
66
  import torch.nn as nn
67
- from .states import AwarenessState
68
 
69
  class IntegrationManager:
70
  def __init__(self):
@@ -78,11 +78,24 @@ class IntegrationManager:
78
  if not isinstance(awareness, AwarenessState):
79
  raise ValueError("Primary awareness state must be of type AwarenessState")
80
 
 
 
81
  return {
82
  "integrated_state": self._integrate_awareness(awareness),
83
  "consciousness_level": awareness.consciousness_level,
84
- "emotional_context": {"valence": awareness.emotional_valence}
 
85
  }
 
 
 
 
 
 
 
 
 
 
86
 
87
  def _integrate_awareness(self, awareness: AwarenessState) -> Dict[str, Any]:
88
  return {
 
61
  teleological_vector: Optional[Dict[str, float]] = None
62
 
63
 
64
+ from typing import Dict, Any, List
65
  import torch
66
  import torch.nn as nn
67
+ from .states import AwarenessState, AwarenessLevel
68
 
69
  class IntegrationManager:
70
  def __init__(self):
 
78
  if not isinstance(awareness, AwarenessState):
79
  raise ValueError("Primary awareness state must be of type AwarenessState")
80
 
81
+ emergent_properties = await self._generate_emergent_properties(awareness)
82
+
83
  return {
84
  "integrated_state": self._integrate_awareness(awareness),
85
  "consciousness_level": awareness.consciousness_level,
86
+ "emotional_context": {"valence": awareness.emotional_valence},
87
+ "emergent_properties": emergent_properties
88
  }
89
+
90
+ async def _generate_emergent_properties(self, primary: AwarenessState) -> Dict[str, Any]:
91
+ return {
92
+ "awareness_depth": self._calculate_awareness_depth(primary),
93
+ "integration_level": primary.awareness_level,
94
+ "consciousness_state": str(primary.level)
95
+ }
96
+
97
+ def _calculate_awareness_depth(self, primary: AwarenessState) -> float:
98
+ return primary.level.value / len(AwarenessLevel)
99
 
100
  def _integrate_awareness(self, awareness: AwarenessState) -> Dict[str, Any]:
101
  return {
src/core/states.py CHANGED
@@ -1,6 +1,14 @@
1
  from dataclasses import dataclass
2
  from typing import Dict, Any
3
  import numpy as np
 
 
 
 
 
 
 
 
4
 
5
  @dataclass
6
  class AwarenessState:
@@ -8,4 +16,5 @@ class AwarenessState:
8
  awareness_level: float
9
  cognitive_state: Dict[str, Any]
10
  emotional_valence: float
11
- consciousness_level: float
 
 
1
  from dataclasses import dataclass
2
  from typing import Dict, Any
3
  import numpy as np
4
+ from enum import Enum
5
+
6
+ class AwarenessLevel(Enum):
7
+ BASIC = 1
8
+ PERCEPTUAL = 2
9
+ REFLECTIVE = 3
10
+ INTEGRATED = 4
11
+ TRANSCENDENT = 5
12
 
13
  @dataclass
14
  class AwarenessState:
 
16
  awareness_level: float
17
  cognitive_state: Dict[str, Any]
18
  emotional_valence: float
19
+ consciousness_level: float
20
+ level: AwarenessLevel = AwarenessLevel.BASIC