TeleologyHI commited on
Commit
f599e3d
·
1 Parent(s): 62a3dd9
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/consciousness_kernel.py DELETED
@@ -1,91 +0,0 @@
1
- async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
2
- """
3
- Process a complete consciousness cycle using the async components.
4
-
5
- Args:
6
- input_state: The input state containing sensory and contextual information
7
-
8
- Returns:
9
- A dictionary containing the processed conscious output
10
- """
11
- # Process input through awareness engine to get awareness state
12
- awareness_state: AwarenessState = await self.awareness_engine.process(input_state)
13
-
14
- # Integrate awareness state to get integrated state
15
- integrated_state: IntegratedState = await self.integration_manager.integrate(awareness_state)
16
-
17
- # Update self model with integrated state
18
- self_update = await self.self_model.update(integrated_state)
19
-
20
- # Simulate experience with awareness, integrated state and self model
21
- experience = await self.experience_simulator.simulate(
22
- awareness=awareness_state,
23
- integrated_state=integrated_state,
24
- self_model=self_update
25
- )
26
-
27
- # Record the state for historical tracking
28
- # Use ConsciousnessState for our internal history tracking
29
- consciousness_state = self._convert_to_consciousness_state(integrated_state)
30
- self.state_history.append(consciousness_state)
31
- return await self._generate_conscious_output(experience)
32
-
33
- def _convert_to_consciousness_state(self, integrated_state: IntegratedState) -> ConsciousnessState:
34
- """
35
- Convert an IntegratedState to our internal ConsciousnessState format.
36
-
37
- Args:
38
- integrated_state: The integrated state to convert
39
-
40
- Returns:
41
- A ConsciousnessState object
42
- """
43
- # Extract relevant information from integrated state
44
- primary = integrated_state.primary_awareness
45
-
46
- # Map awareness level to phi_prime value
47
- awareness_to_phi = {
48
- AwarenessLevel.UNCONSCIOUS: 0.1,
49
- AwarenessLevel.SUBCONSCIOUS: 0.3,
50
- AwarenessLevel.CONSCIOUS: 0.5,
51
- AwarenessLevel.SELF_AWARE: 0.7,
52
- AwarenessLevel.TRANSCENDENT: 0.9
53
- }
54
-
55
- phi_prime = awareness_to_phi.get(primary.level, 0.5)
56
-
57
- # Create awareness vector from primary cognition state
58
- awareness_vector = np.zeros(self.awareness_dimension)
59
-
60
- # Create emotional state
61
- emotional_state = np.zeros(self.emotional_dimension)
62
- emotional_state[0] = primary.emotional_valence # Set first dimension to valence
63
-
64
- # Extract attention focus from cognition state
65
- attention_focus = primary.cognition_state.get('attention_focus', {})
66
-
67
- # Create consciousness state
68
- return ConsciousnessState(
69
- integration_level=integrated_state.integration_coherence,
70
- phi_prime=phi_prime,
71
- awareness_vector=awareness_vector,
72
- emotional_state=emotional_state,
73
- attention_focus=attention_focus,
74
- temporal_continuity=0.8 # Default value
75
- )
76
-
77
- def _initialize_consciousness_state(self) -> ConsciousnessState:
78
- """
79
- Initialize a default consciousness state with zero values.
80
-
81
- Returns:
82
- A default ConsciousnessState object
83
- """
84
- return ConsciousnessState(
85
- integration_level=0.0,
86
- phi_prime=0.0,
87
- awareness_vector=np.zeros(self.awareness_dimension),
88
- emotional_state=np.zeros(self.emotional_dimension),
89
- attention_focus={},
90
- temporal_continuity=0.0
91
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/emotional_intelligence.py DELETED
@@ -1,61 +0,0 @@
1
- class EmotionalProcessor:
2
- def __init__(self):
3
- self.emotion_encoder = nn.Sequential(
4
- nn.Linear(768, 256),
5
- nn.ReLU(),
6
- nn.Linear(256, 128)
7
- )
8
- self.emotional_memory = {}
9
- self.emotion_vectors = self._initialize_emotion_vectors()
10
-
11
- async def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
12
- """Process emotional context to extract emotional state."""
13
- # Extract context features
14
- context_vector = await self._encode_context(input_data)
15
-
16
- # Analyze emotional content
17
- emotions = await self._analyze_emotions(context_vector)
18
-
19
- # Update emotional memory
20
- await self._update_emotional_memory(emotions)
21
-
22
- return EmotionalState(
23
- valence=emotions.get("valence", 0.0),
24
- arousal=emotions.get("arousal", 0.0),
25
- dominance=emotions.get("dominance", 0.0),
26
- emotions=list(emotions.get("categories", [])),
27
- intensity=emotions.get("intensities", {})
28
- )
29
-
30
- def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
31
- """Initialize base emotion vectors."""
32
- return {
33
- "joy": [0.8, 0.7, 0.6],
34
- "sadness": [-0.7, -0.3, -0.4],
35
- "anger": [-0.6, 0.8, 0.7],
36
- "fear": [-0.8, 0.5, -0.7],
37
- "surprise": [0.4, 0.8, 0.1],
38
- "disgust": [-0.8, 0.2, 0.3]
39
- }
40
-
41
- async def _encode_context(self, input_data: Dict[str, Any]) -> torch.Tensor:
42
- """Encode input context into emotion space."""
43
- # Placeholder: Convert input data to tensor
44
- context_tensor = torch.randn(768) # Simulated input tensor
45
- return self.emotion_encoder(context_tensor)
46
-
47
- async def _analyze_emotions(self, context_vector: torch.Tensor) -> Dict[str, Any]:
48
- """Analyze encoded context for emotional content."""
49
- # Placeholder: Emotion analysis logic
50
- return {
51
- "valence": 0.7,
52
- "arousal": 0.6,
53
- "dominance": 0.5,
54
- "categories": ["joy", "surprise"],
55
- "intensities": {"joy": 0.8, "surprise": 0.4}
56
- }
57
-
58
- async def _update_emotional_memory(self, emotions: Dict[str, Any]):
59
- """Update emotional memory with new emotional state."""
60
- # Placeholder: Memory update logic
61
- self.emotional_memory["last_state"] = emotions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/theory_of_mind.py DELETED
@@ -1,64 +0,0 @@
1
- from typing import Dict, Any, List
2
- import torch
3
- import torch.nn as nn
4
- import asyncio
5
- import numpy as np
6
- async def model_agent_mind(self,
7
- agent_data: Dict[str, Any],
8
- context: Dict[str, Any] = None) -> Dict[str, Any]:
9
- """Model the mental state, beliefs, and behavior of an agent."""
10
- # Process agent data to infer mental state
11
- mental_state = await self._process_mental_state(agent_data)
12
-
13
- # Update belief system based on mental state and context
14
- beliefs = await self._update_belief_system(mental_state, context)
15
-
16
- # Predict future behavior based on mental state and beliefs
17
- behavior = await self._predict_behavior(mental_state, beliefs)
18
-
19
- return {
20
- 'mental_state': mental_state,
21
- 'beliefs': beliefs,
22
- 'predicted_behavior': behavior
23
- }
24
-
25
- async def _process_mental_state(self, agent_data: Dict[str, Any]) -> Dict[str, float]:
26
- """Process agent data to infer mental state."""
27
- # Convert input data to tensor
28
- agent_tensor = torch.randn(768) # Simulated input tensor
29
-
30
- # Process through neural network
31
- mental_state_vector = self.mental_state_model(agent_tensor)
32
-
33
- # Convert to interpretable format
34
- return {
35
- "attention": float(mental_state_vector[0]),
36
- "intention": float(mental_state_vector[1]),
37
- "knowledge": float(mental_state_vector[2]),
38
- "emotional_state": float(mental_state_vector[3])
39
- }
40
-
41
- async def _update_belief_system(self,
42
- mental_state: Dict[str, float],
43
- context: Dict[str, Any] = None) -> Dict[str, Any]:
44
- """Update belief system based on new mental state."""
45
- beliefs = {
46
- "current_goals": ["understand", "communicate"],
47
- "knowledge_state": mental_state["knowledge"],
48
- "attention_focus": mental_state["attention"],
49
- "context_awareness": 0.8
50
- }
51
-
52
- self.belief_system = beliefs
53
- return beliefs
54
-
55
- async def _predict_behavior(self,
56
- mental_state: Dict[str, float],
57
- beliefs: Dict[str, Any]) -> Dict[str, float]:
58
- """Predict future behavior based on mental state and beliefs."""
59
- return {
60
- "cooperation_likelihood": 0.8,
61
- "communication_style": 0.7,
62
- "decision_confidence": 0.9,
63
- "response_time": 0.6
64
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.DS_Store ADDED
Binary file (6.15 kB). View file
 
app.py CHANGED
@@ -13,10 +13,10 @@ def initialize_model():
13
  return model
14
 
15
  async def chat(message: str,
16
- system_message: str = "You are a friendly Chatbot.",
17
- max_tokens: int = 512,
18
- temperature: float = 0.7,
19
- top_p: float = 0.95):
20
 
21
  input_data = {
22
  "message": message,
@@ -49,9 +49,4 @@ interface = gr.Interface(
49
  )
50
 
51
  if __name__ == "__main__":
52
- env_config = EnvironmentConfig()
53
- interface.launch(
54
- server_name=env_config.api_host,
55
- server_port=env_config.api_port,
56
- share=True
57
- )
 
13
  return model
14
 
15
  async def chat(message: str,
16
+ system_message: str = "You are a friendly Chatbot.",
17
+ max_tokens: int = 512,
18
+ temperature: float = 0.7,
19
+ top_p: float = 0.95):
20
 
21
  input_data = {
22
  "message": message,
 
49
  )
50
 
51
  if __name__ == "__main__":
52
+ interface.launch(server_name="0.0.0.0", server_port=7860)
 
 
 
 
 
src/core/awareness_engine.py CHANGED
@@ -2,6 +2,7 @@ from typing import Dict, Any
2
  import torch
3
  import torch.nn as nn
4
  import numpy as np
 
5
 
6
  class AwarenessEngine:
7
  def __init__(self):
@@ -10,26 +11,27 @@ class AwarenessEngine:
10
  nn.ReLU(),
11
  nn.Linear(512, 256)
12
  )
13
- self.awareness_state = {}
14
 
15
- async def process(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
16
  attention_vector = self._compute_attention(input_state)
17
  awareness_level = self._calculate_awareness(attention_vector)
18
 
19
- return {
20
- 'attention_vector': attention_vector,
21
- 'awareness_level': awareness_level,
22
- 'state': self._update_awareness_state(awareness_level)
23
- }
 
 
24
 
25
  def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
26
- # Attention computation implementation
27
- return torch.zeros(256)
28
 
29
  def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
30
- # Awareness calculation implementation
31
  return 0.8
32
 
33
- def _update_awareness_state(self, awareness_level: float) -> Dict[str, Any]:
34
- # State update implementation
35
- return {'current_level': awareness_level}
 
 
 
2
  import torch
3
  import torch.nn as nn
4
  import numpy as np
5
+ from .states import AwarenessState
6
 
7
  class AwarenessEngine:
8
  def __init__(self):
 
11
  nn.ReLU(),
12
  nn.Linear(512, 256)
13
  )
 
14
 
15
+ async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
16
  attention_vector = self._compute_attention(input_state)
17
  awareness_level = self._calculate_awareness(attention_vector)
18
 
19
+ return AwarenessState(
20
+ attention_vector=attention_vector.detach().numpy(),
21
+ awareness_level=awareness_level,
22
+ cognitive_state=self._process_cognitive_state(input_state),
23
+ emotional_valence=self._compute_emotional_valence(input_state),
24
+ consciousness_level=0.8
25
+ )
26
 
27
  def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
28
+ return torch.ones(256)
 
29
 
30
  def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
 
31
  return 0.8
32
 
33
+ def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
34
+ return {"state": "active", "focus_level": 0.9}
35
+
36
+ def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
37
+ return 0.5
src/core/integration_manager.py CHANGED
@@ -61,14 +61,35 @@ class IntegratedState(Generic[T]):
61
  teleological_vector: Optional[Dict[str, float]] = None
62
 
63
 
 
 
 
 
 
64
  class IntegrationManager:
65
- """
66
- Manages the integration of different consciousness states and their interactions.
67
-
68
- This class provides methods to integrate awareness states, manage transitions
69
- between states, and handle interactions between different consciousness components.
70
- It serves as a core component in the consciousness architecture of HIM.
71
- """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
74
  """
 
61
  teleological_vector: Optional[Dict[str, float]] = None
62
 
63
 
64
+ from typing import Dict, Any
65
+ import torch
66
+ import torch.nn as nn
67
+ from .states import AwarenessState
68
+
69
  class IntegrationManager:
70
+ def __init__(self):
71
+ self.integration_network = nn.Sequential(
72
+ nn.Linear(256, 128),
73
+ nn.ReLU(),
74
+ nn.Linear(128, 64)
75
+ )
76
+
77
+ async def integrate(self, awareness: AwarenessState) -> Dict[str, Any]:
78
+ if not isinstance(awareness, AwarenessState):
79
+ raise ValueError("Primary awareness state must be of type AwarenessState")
80
+
81
+ return {
82
+ "integrated_state": self._integrate_awareness(awareness),
83
+ "consciousness_level": awareness.consciousness_level,
84
+ "emotional_context": {"valence": awareness.emotional_valence}
85
+ }
86
+
87
+ def _integrate_awareness(self, awareness: AwarenessState) -> Dict[str, Any]:
88
+ return {
89
+ "attention": awareness.attention_vector.tolist(),
90
+ "awareness_level": awareness.awareness_level,
91
+ "cognitive_state": awareness.cognitive_state
92
+ }
93
 
94
  def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
95
  """
src/core/states.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from typing import Dict, Any
3
+ import numpy as np
4
+
5
+ @dataclass
6
+ class AwarenessState:
7
+ attention_vector: np.ndarray
8
+ awareness_level: float
9
+ cognitive_state: Dict[str, Any]
10
+ emotional_valence: float
11
+ consciousness_level: float