Spaces:
Sleeping
Sleeping
TeleologyHI
commited on
Commit
·
f599e3d
1
Parent(s):
62a3dd9
up
Browse files- /n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/consciousness_kernel.py +0 -91
- /n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/emotional_intelligence.py +0 -61
- /n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/theory_of_mind.py +0 -64
- .DS_Store +0 -0
- app.py +5 -10
- src/core/awareness_engine.py +15 -13
- src/core/integration_manager.py +28 -7
- src/core/states.py +11 -0
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/consciousness_kernel.py
DELETED
@@ -1,91 +0,0 @@
|
|
1 |
-
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
2 |
-
"""
|
3 |
-
Process a complete consciousness cycle using the async components.
|
4 |
-
|
5 |
-
Args:
|
6 |
-
input_state: The input state containing sensory and contextual information
|
7 |
-
|
8 |
-
Returns:
|
9 |
-
A dictionary containing the processed conscious output
|
10 |
-
"""
|
11 |
-
# Process input through awareness engine to get awareness state
|
12 |
-
awareness_state: AwarenessState = await self.awareness_engine.process(input_state)
|
13 |
-
|
14 |
-
# Integrate awareness state to get integrated state
|
15 |
-
integrated_state: IntegratedState = await self.integration_manager.integrate(awareness_state)
|
16 |
-
|
17 |
-
# Update self model with integrated state
|
18 |
-
self_update = await self.self_model.update(integrated_state)
|
19 |
-
|
20 |
-
# Simulate experience with awareness, integrated state and self model
|
21 |
-
experience = await self.experience_simulator.simulate(
|
22 |
-
awareness=awareness_state,
|
23 |
-
integrated_state=integrated_state,
|
24 |
-
self_model=self_update
|
25 |
-
)
|
26 |
-
|
27 |
-
# Record the state for historical tracking
|
28 |
-
# Use ConsciousnessState for our internal history tracking
|
29 |
-
consciousness_state = self._convert_to_consciousness_state(integrated_state)
|
30 |
-
self.state_history.append(consciousness_state)
|
31 |
-
return await self._generate_conscious_output(experience)
|
32 |
-
|
33 |
-
def _convert_to_consciousness_state(self, integrated_state: IntegratedState) -> ConsciousnessState:
|
34 |
-
"""
|
35 |
-
Convert an IntegratedState to our internal ConsciousnessState format.
|
36 |
-
|
37 |
-
Args:
|
38 |
-
integrated_state: The integrated state to convert
|
39 |
-
|
40 |
-
Returns:
|
41 |
-
A ConsciousnessState object
|
42 |
-
"""
|
43 |
-
# Extract relevant information from integrated state
|
44 |
-
primary = integrated_state.primary_awareness
|
45 |
-
|
46 |
-
# Map awareness level to phi_prime value
|
47 |
-
awareness_to_phi = {
|
48 |
-
AwarenessLevel.UNCONSCIOUS: 0.1,
|
49 |
-
AwarenessLevel.SUBCONSCIOUS: 0.3,
|
50 |
-
AwarenessLevel.CONSCIOUS: 0.5,
|
51 |
-
AwarenessLevel.SELF_AWARE: 0.7,
|
52 |
-
AwarenessLevel.TRANSCENDENT: 0.9
|
53 |
-
}
|
54 |
-
|
55 |
-
phi_prime = awareness_to_phi.get(primary.level, 0.5)
|
56 |
-
|
57 |
-
# Create awareness vector from primary cognition state
|
58 |
-
awareness_vector = np.zeros(self.awareness_dimension)
|
59 |
-
|
60 |
-
# Create emotional state
|
61 |
-
emotional_state = np.zeros(self.emotional_dimension)
|
62 |
-
emotional_state[0] = primary.emotional_valence # Set first dimension to valence
|
63 |
-
|
64 |
-
# Extract attention focus from cognition state
|
65 |
-
attention_focus = primary.cognition_state.get('attention_focus', {})
|
66 |
-
|
67 |
-
# Create consciousness state
|
68 |
-
return ConsciousnessState(
|
69 |
-
integration_level=integrated_state.integration_coherence,
|
70 |
-
phi_prime=phi_prime,
|
71 |
-
awareness_vector=awareness_vector,
|
72 |
-
emotional_state=emotional_state,
|
73 |
-
attention_focus=attention_focus,
|
74 |
-
temporal_continuity=0.8 # Default value
|
75 |
-
)
|
76 |
-
|
77 |
-
def _initialize_consciousness_state(self) -> ConsciousnessState:
|
78 |
-
"""
|
79 |
-
Initialize a default consciousness state with zero values.
|
80 |
-
|
81 |
-
Returns:
|
82 |
-
A default ConsciousnessState object
|
83 |
-
"""
|
84 |
-
return ConsciousnessState(
|
85 |
-
integration_level=0.0,
|
86 |
-
phi_prime=0.0,
|
87 |
-
awareness_vector=np.zeros(self.awareness_dimension),
|
88 |
-
emotional_state=np.zeros(self.emotional_dimension),
|
89 |
-
attention_focus={},
|
90 |
-
temporal_continuity=0.0
|
91 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/emotional_intelligence.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
class EmotionalProcessor:
|
2 |
-
def __init__(self):
|
3 |
-
self.emotion_encoder = nn.Sequential(
|
4 |
-
nn.Linear(768, 256),
|
5 |
-
nn.ReLU(),
|
6 |
-
nn.Linear(256, 128)
|
7 |
-
)
|
8 |
-
self.emotional_memory = {}
|
9 |
-
self.emotion_vectors = self._initialize_emotion_vectors()
|
10 |
-
|
11 |
-
async def process_emotional_context(self, input_data: Dict[str, Any]) -> EmotionalState:
|
12 |
-
"""Process emotional context to extract emotional state."""
|
13 |
-
# Extract context features
|
14 |
-
context_vector = await self._encode_context(input_data)
|
15 |
-
|
16 |
-
# Analyze emotional content
|
17 |
-
emotions = await self._analyze_emotions(context_vector)
|
18 |
-
|
19 |
-
# Update emotional memory
|
20 |
-
await self._update_emotional_memory(emotions)
|
21 |
-
|
22 |
-
return EmotionalState(
|
23 |
-
valence=emotions.get("valence", 0.0),
|
24 |
-
arousal=emotions.get("arousal", 0.0),
|
25 |
-
dominance=emotions.get("dominance", 0.0),
|
26 |
-
emotions=list(emotions.get("categories", [])),
|
27 |
-
intensity=emotions.get("intensities", {})
|
28 |
-
)
|
29 |
-
|
30 |
-
def _initialize_emotion_vectors(self) -> Dict[str, List[float]]:
|
31 |
-
"""Initialize base emotion vectors."""
|
32 |
-
return {
|
33 |
-
"joy": [0.8, 0.7, 0.6],
|
34 |
-
"sadness": [-0.7, -0.3, -0.4],
|
35 |
-
"anger": [-0.6, 0.8, 0.7],
|
36 |
-
"fear": [-0.8, 0.5, -0.7],
|
37 |
-
"surprise": [0.4, 0.8, 0.1],
|
38 |
-
"disgust": [-0.8, 0.2, 0.3]
|
39 |
-
}
|
40 |
-
|
41 |
-
async def _encode_context(self, input_data: Dict[str, Any]) -> torch.Tensor:
|
42 |
-
"""Encode input context into emotion space."""
|
43 |
-
# Placeholder: Convert input data to tensor
|
44 |
-
context_tensor = torch.randn(768) # Simulated input tensor
|
45 |
-
return self.emotion_encoder(context_tensor)
|
46 |
-
|
47 |
-
async def _analyze_emotions(self, context_vector: torch.Tensor) -> Dict[str, Any]:
|
48 |
-
"""Analyze encoded context for emotional content."""
|
49 |
-
# Placeholder: Emotion analysis logic
|
50 |
-
return {
|
51 |
-
"valence": 0.7,
|
52 |
-
"arousal": 0.6,
|
53 |
-
"dominance": 0.5,
|
54 |
-
"categories": ["joy", "surprise"],
|
55 |
-
"intensities": {"joy": 0.8, "surprise": 0.4}
|
56 |
-
}
|
57 |
-
|
58 |
-
async def _update_emotional_memory(self, emotions: Dict[str, Any]):
|
59 |
-
"""Update emotional memory with new emotional state."""
|
60 |
-
# Placeholder: Memory update logic
|
61 |
-
self.emotional_memory["last_state"] = emotions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/n/Users/davidccavalcante/Takk/Hub/projects/TeleologyHI/HIM-self/src/core/theory_of_mind.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
from typing import Dict, Any, List
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import asyncio
|
5 |
-
import numpy as np
|
6 |
-
async def model_agent_mind(self,
|
7 |
-
agent_data: Dict[str, Any],
|
8 |
-
context: Dict[str, Any] = None) -> Dict[str, Any]:
|
9 |
-
"""Model the mental state, beliefs, and behavior of an agent."""
|
10 |
-
# Process agent data to infer mental state
|
11 |
-
mental_state = await self._process_mental_state(agent_data)
|
12 |
-
|
13 |
-
# Update belief system based on mental state and context
|
14 |
-
beliefs = await self._update_belief_system(mental_state, context)
|
15 |
-
|
16 |
-
# Predict future behavior based on mental state and beliefs
|
17 |
-
behavior = await self._predict_behavior(mental_state, beliefs)
|
18 |
-
|
19 |
-
return {
|
20 |
-
'mental_state': mental_state,
|
21 |
-
'beliefs': beliefs,
|
22 |
-
'predicted_behavior': behavior
|
23 |
-
}
|
24 |
-
|
25 |
-
async def _process_mental_state(self, agent_data: Dict[str, Any]) -> Dict[str, float]:
|
26 |
-
"""Process agent data to infer mental state."""
|
27 |
-
# Convert input data to tensor
|
28 |
-
agent_tensor = torch.randn(768) # Simulated input tensor
|
29 |
-
|
30 |
-
# Process through neural network
|
31 |
-
mental_state_vector = self.mental_state_model(agent_tensor)
|
32 |
-
|
33 |
-
# Convert to interpretable format
|
34 |
-
return {
|
35 |
-
"attention": float(mental_state_vector[0]),
|
36 |
-
"intention": float(mental_state_vector[1]),
|
37 |
-
"knowledge": float(mental_state_vector[2]),
|
38 |
-
"emotional_state": float(mental_state_vector[3])
|
39 |
-
}
|
40 |
-
|
41 |
-
async def _update_belief_system(self,
|
42 |
-
mental_state: Dict[str, float],
|
43 |
-
context: Dict[str, Any] = None) -> Dict[str, Any]:
|
44 |
-
"""Update belief system based on new mental state."""
|
45 |
-
beliefs = {
|
46 |
-
"current_goals": ["understand", "communicate"],
|
47 |
-
"knowledge_state": mental_state["knowledge"],
|
48 |
-
"attention_focus": mental_state["attention"],
|
49 |
-
"context_awareness": 0.8
|
50 |
-
}
|
51 |
-
|
52 |
-
self.belief_system = beliefs
|
53 |
-
return beliefs
|
54 |
-
|
55 |
-
async def _predict_behavior(self,
|
56 |
-
mental_state: Dict[str, float],
|
57 |
-
beliefs: Dict[str, Any]) -> Dict[str, float]:
|
58 |
-
"""Predict future behavior based on mental state and beliefs."""
|
59 |
-
return {
|
60 |
-
"cooperation_likelihood": 0.8,
|
61 |
-
"communication_style": 0.7,
|
62 |
-
"decision_confidence": 0.9,
|
63 |
-
"response_time": 0.6
|
64 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
CHANGED
@@ -13,10 +13,10 @@ def initialize_model():
|
|
13 |
return model
|
14 |
|
15 |
async def chat(message: str,
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
input_data = {
|
22 |
"message": message,
|
@@ -49,9 +49,4 @@ interface = gr.Interface(
|
|
49 |
)
|
50 |
|
51 |
if __name__ == "__main__":
|
52 |
-
|
53 |
-
interface.launch(
|
54 |
-
server_name=env_config.api_host,
|
55 |
-
server_port=env_config.api_port,
|
56 |
-
share=True
|
57 |
-
)
|
|
|
13 |
return model
|
14 |
|
15 |
async def chat(message: str,
|
16 |
+
system_message: str = "You are a friendly Chatbot.",
|
17 |
+
max_tokens: int = 512,
|
18 |
+
temperature: float = 0.7,
|
19 |
+
top_p: float = 0.95):
|
20 |
|
21 |
input_data = {
|
22 |
"message": message,
|
|
|
49 |
)
|
50 |
|
51 |
if __name__ == "__main__":
|
52 |
+
interface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
src/core/awareness_engine.py
CHANGED
@@ -2,6 +2,7 @@ from typing import Dict, Any
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
class AwarenessEngine:
|
7 |
def __init__(self):
|
@@ -10,26 +11,27 @@ class AwarenessEngine:
|
|
10 |
nn.ReLU(),
|
11 |
nn.Linear(512, 256)
|
12 |
)
|
13 |
-
self.awareness_state = {}
|
14 |
|
15 |
-
async def process(self, input_state: Dict[str, Any]) ->
|
16 |
attention_vector = self._compute_attention(input_state)
|
17 |
awareness_level = self._calculate_awareness(attention_vector)
|
18 |
|
19 |
-
return
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
24 |
|
25 |
def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
|
26 |
-
|
27 |
-
return torch.zeros(256)
|
28 |
|
29 |
def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
|
30 |
-
# Awareness calculation implementation
|
31 |
return 0.8
|
32 |
|
33 |
-
def
|
34 |
-
|
35 |
-
|
|
|
|
|
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
import numpy as np
|
5 |
+
from .states import AwarenessState
|
6 |
|
7 |
class AwarenessEngine:
|
8 |
def __init__(self):
|
|
|
11 |
nn.ReLU(),
|
12 |
nn.Linear(512, 256)
|
13 |
)
|
|
|
14 |
|
15 |
+
async def process(self, input_state: Dict[str, Any]) -> AwarenessState:
|
16 |
attention_vector = self._compute_attention(input_state)
|
17 |
awareness_level = self._calculate_awareness(attention_vector)
|
18 |
|
19 |
+
return AwarenessState(
|
20 |
+
attention_vector=attention_vector.detach().numpy(),
|
21 |
+
awareness_level=awareness_level,
|
22 |
+
cognitive_state=self._process_cognitive_state(input_state),
|
23 |
+
emotional_valence=self._compute_emotional_valence(input_state),
|
24 |
+
consciousness_level=0.8
|
25 |
+
)
|
26 |
|
27 |
def _compute_attention(self, input_state: Dict[str, Any]) -> torch.Tensor:
|
28 |
+
return torch.ones(256)
|
|
|
29 |
|
30 |
def _calculate_awareness(self, attention_vector: torch.Tensor) -> float:
|
|
|
31 |
return 0.8
|
32 |
|
33 |
+
def _process_cognitive_state(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
|
34 |
+
return {"state": "active", "focus_level": 0.9}
|
35 |
+
|
36 |
+
def _compute_emotional_valence(self, input_state: Dict[str, Any]) -> float:
|
37 |
+
return 0.5
|
src/core/integration_manager.py
CHANGED
@@ -61,14 +61,35 @@ class IntegratedState(Generic[T]):
|
|
61 |
teleological_vector: Optional[Dict[str, float]] = None
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
class IntegrationManager:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
|
74 |
"""
|
|
|
61 |
teleological_vector: Optional[Dict[str, float]] = None
|
62 |
|
63 |
|
64 |
+
from typing import Dict, Any
|
65 |
+
import torch
|
66 |
+
import torch.nn as nn
|
67 |
+
from .states import AwarenessState
|
68 |
+
|
69 |
class IntegrationManager:
|
70 |
+
def __init__(self):
|
71 |
+
self.integration_network = nn.Sequential(
|
72 |
+
nn.Linear(256, 128),
|
73 |
+
nn.ReLU(),
|
74 |
+
nn.Linear(128, 64)
|
75 |
+
)
|
76 |
+
|
77 |
+
async def integrate(self, awareness: AwarenessState) -> Dict[str, Any]:
|
78 |
+
if not isinstance(awareness, AwarenessState):
|
79 |
+
raise ValueError("Primary awareness state must be of type AwarenessState")
|
80 |
+
|
81 |
+
return {
|
82 |
+
"integrated_state": self._integrate_awareness(awareness),
|
83 |
+
"consciousness_level": awareness.consciousness_level,
|
84 |
+
"emotional_context": {"valence": awareness.emotional_valence}
|
85 |
+
}
|
86 |
+
|
87 |
+
def _integrate_awareness(self, awareness: AwarenessState) -> Dict[str, Any]:
|
88 |
+
return {
|
89 |
+
"attention": awareness.attention_vector.tolist(),
|
90 |
+
"awareness_level": awareness.awareness_level,
|
91 |
+
"cognitive_state": awareness.cognitive_state
|
92 |
+
}
|
93 |
|
94 |
def __init__(self, integration_threshold: float = 0.7, coherence_factor: float = 0.85):
|
95 |
"""
|
src/core/states.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, Any
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
@dataclass
|
6 |
+
class AwarenessState:
|
7 |
+
attention_vector: np.ndarray
|
8 |
+
awareness_level: float
|
9 |
+
cognitive_state: Dict[str, Any]
|
10 |
+
emotional_valence: float
|
11 |
+
consciousness_level: float
|