Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import json | |
import uuid | |
import time | |
import numpy as np | |
import torch | |
import fpsample | |
import fast_simplification | |
import matplotlib.pyplot as plt | |
cmap = plt.get_cmap("hsv") | |
from torchvision.transforms import v2 | |
from pytorch_lightning import seed_everything | |
from PIL import Image | |
from omegaconf import OmegaConf | |
from einops import rearrange | |
from scipy.spatial.transform import Rotation | |
from safetensors import safe_open | |
from huggingface_hub import hf_hub_download | |
from transformers import AutoModelForImageSegmentation | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
from freesplatter.hunyuan.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline | |
from freesplatter.utils.mesh import Mesh | |
from freesplatter.utils.mesh_renderer import MeshRenderer | |
from freesplatter.utils.camera_util import * | |
from freesplatter.utils.recon_util import * | |
from freesplatter.utils.infer_util import * | |
from freesplatter.webui.camera_viewer.visualizer import CameraVisualizer | |
def inv_sigmoid(x: torch.Tensor) -> torch.Tensor: | |
return torch.log(x / (1.0 - x)) | |
def save_gaussian(latent, gs_vis_path, model, opacity_threshold=None, pad_2dgs_scale=True): | |
if latent.ndim == 3: | |
latent = latent[0] | |
sh_dim = model.sh_dim | |
scale_dim = 2 if model.use_2dgs else 3 | |
xyz, features, opacity, scaling, rotation = latent.split([3, sh_dim, 1, scale_dim, 4], dim=-1) | |
features = features.reshape(features.shape[0], sh_dim//3, 3) | |
if opacity_threshold is not None: | |
index = torch.nonzero(opacity.sigmoid() > opacity_threshold)[:, 0] | |
xyz = xyz[index] | |
features = features[index] | |
opacity = opacity[index] | |
scaling = scaling[index] | |
rotation = rotation[index] | |
# transform gaussians from reference view to world view | |
cam2world = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').to(latent) | |
R, T = cam2world[:3, :3], cam2world[:3, 3].reshape(1, 3) | |
xyz = xyz @ R.T + T | |
rotation = rotation.detach().cpu().numpy() | |
rotation = Rotation.from_quat(rotation[:, [1, 2, 3, 0]]).as_matrix() | |
rotation = R.detach().cpu().numpy() @ rotation | |
rotation = Rotation.from_matrix(rotation).as_quat()[:, [3, 0, 1, 2]] | |
rotation = torch.from_numpy(rotation).to(latent) | |
# pad 2DGS with an additional z-scale for visualization | |
if scaling.shape[-1] == 2 and pad_2dgs_scale: | |
z_scaling = inv_sigmoid(torch.ones_like(scaling[:, :1]) * 0.001) | |
scaling = torch.cat([scaling, z_scaling], dim=-1) | |
pc_vis = model.gs_renderer.gaussian_model.set_data( | |
xyz.float(), features.float(), scaling.float(), rotation.float(), opacity.float()) | |
pc_vis.save_ply_vis(gs_vis_path) | |
class FreeSplatterRunner: | |
def __init__(self, device): | |
self.device = device | |
# background remover | |
self.rembg = AutoModelForImageSegmentation.from_pretrained( | |
"briaai/RMBG-2.0", | |
trust_remote_code=True, | |
cache_dir='ckpts/', | |
) | |
self.rembg.eval() | |
# diffusion models | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.1", | |
custom_pipeline="sudo-ai/zero123plus-pipeline", | |
torch_dtype=torch.float16, | |
cache_dir="ckpts/", | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
self.zero123plus_v11 = pipeline.to(device) | |
pipeline = DiffusionPipeline.from_pretrained( | |
"sudo-ai/zero123plus-v1.2", | |
custom_pipeline="sudo-ai/zero123plus-pipeline", | |
torch_dtype=torch.float16, | |
cache_dir="ckpts/", | |
) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
pipeline.scheduler.config, timestep_spacing='trailing' | |
) | |
self.zero123plus_v12 = pipeline.to(device) | |
pipeline = HunYuan3D_MVD_Std_Pipeline.from_pretrained( | |
'./ckpts/Hunyuan3D-1/mvd_std', | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
self.hunyuan3d_mvd_std = pipeline.to(device) | |
# freesplatter | |
config_file = 'configs/freesplatter-object.yaml' | |
ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-object.safetensors', local_dir='./ckpts/FreeSplatter') | |
model = instantiate_from_config(OmegaConf.load(config_file).model) | |
state_dict = {} | |
with safe_open(ckpt_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
model.load_state_dict(state_dict, strict=True) | |
self.freesplatter = model.eval().to(device) | |
config_file = 'configs/freesplatter-object-2dgs.yaml' | |
ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-object-2dgs.safetensors', local_dir='./ckpts/FreeSplatter') | |
model = instantiate_from_config(OmegaConf.load(config_file).model) | |
state_dict = {} | |
with safe_open(ckpt_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
model.load_state_dict(state_dict, strict=True) | |
self.freesplatter_2dgs = model.eval().to(device) | |
config_file = 'configs/freesplatter-scene.yaml' | |
ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-scene.safetensors', local_dir='./ckpts/FreeSplatter') | |
model = instantiate_from_config(OmegaConf.load(config_file).model) | |
state_dict = {} | |
with safe_open(ckpt_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
model.load_state_dict(state_dict, strict=True) | |
self.freesplatter_scene = model.eval().to(device) | |
# mesh optimizer | |
self.mesh_renderer = MeshRenderer( | |
near=0.01, | |
far=100, | |
ssaa=1, | |
texture_filter='linear-mipmap-linear').to(device) | |
def run_segmentation( | |
self, | |
image, | |
do_rembg=True, | |
): | |
torch.cuda.empty_cache() | |
if do_rembg: | |
image = remove_background(image, self.rembg) | |
return image | |
def run_img_to_3d( | |
self, | |
image_rgba, | |
model='Zero123++ v1.2', | |
diffusion_steps=30, | |
guidance_scale=4.0, | |
seed=42, | |
view_indices=[], | |
gs_type='2DGS', | |
mesh_reduction=0.5, | |
cache_dir=None, | |
): | |
torch.cuda.empty_cache() | |
self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}') | |
os.makedirs(self.output_dir, exist_ok=True) | |
# image-to-multiview | |
input_image = resize_foreground(image_rgba, 0.9) | |
seed_everything(seed) | |
if model == 'Zero123++ v1.1': | |
output_image = self.zero123plus_v11( | |
input_image, | |
num_inference_steps=diffusion_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
elif model == 'Zero123++ v1.2': | |
output_image = self.zero123plus_v12( | |
input_image, | |
num_inference_steps=diffusion_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
elif model == 'Hunyuan3D Std': | |
output_image = self.hunyuan3d_mvd_std( | |
input_image, | |
num_inference_steps=diffusion_steps, | |
guidance_scale=guidance_scale, | |
guidance_curve=lambda t:2.0, | |
).images[0] | |
else: | |
raise ValueError(f'Unknown model: {model}') | |
# preprocess images | |
image, alpha = rgba_to_white_background(input_image) | |
image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1) | |
alpha = v2.functional.resize(alpha, 512, interpolation=0, antialias=True).clamp(0, 1) | |
output_image_rgba = remove_background(output_image, self.rembg) | |
if 'Zero123++' in model: | |
images, alphas = rgba_to_white_background(output_image_rgba) | |
else: | |
_, alphas = rgba_to_white_background(output_image_rgba) | |
images = torch.from_numpy(np.asarray(output_image) / 255.0).float() | |
images = rearrange(images, 'h w c -> c h w') | |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) | |
alphas = rearrange(alphas, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) | |
if model == 'Hunyuan3D Std': | |
images = images[[0, 2, 4, 5, 3, 1]] | |
alphas = alphas[[0, 2, 4, 5, 3, 1]] | |
images_vis = v2.functional.to_pil_image(rearrange(images, 'nm c h w -> c h (nm w)')) | |
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1) | |
alphas = v2.functional.resize(alphas, 512, interpolation=0, antialias=True).clamp(0, 1) | |
images = torch.cat([image.unsqueeze(0), images], dim=0) # 7 x 3 x 512 x 512 | |
alphas = torch.cat([alpha.unsqueeze(0), alphas], dim=0) # 7 x 1 x 512 x 512 | |
# run reconstruction | |
view_indices = [1, 2, 3, 4, 5, 6] if len(view_indices) == 0 else view_indices | |
images, alphas = images[view_indices], alphas[view_indices] | |
legends = [f'V{i}' if i != 0 else 'Input' for i in view_indices] | |
gs_vis_path, video_path, mesh_fine_path, fig = self.run_freesplatter_object( | |
images, alphas, legends=legends, gs_type=gs_type, mesh_reduction=mesh_reduction) | |
return images_vis, gs_vis_path, video_path, mesh_fine_path, fig | |
def run_views_to_3d( | |
self, | |
image_files, | |
do_rembg=False, | |
gs_type='2DGS', | |
mesh_reduction=0.5, | |
cache_dir=None, | |
): | |
torch.cuda.empty_cache() | |
self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}') | |
os.makedirs(self.output_dir, exist_ok=True) | |
# preprocesss images | |
images, alphas = [], [] | |
for image_file in image_files: | |
if isinstance(image_file, tuple): | |
image_file = image_file[0] | |
image = Image.open(image_file) | |
w, h = image.size | |
image_rgba = self.run_segmentation(image) | |
if image.mode == 'RGBA': | |
image, alpha = rgba_to_white_background(image_rgba) | |
image = v2.functional.center_crop(image, min(h, w)) | |
alpha = v2.functional.center_crop(alpha, min(h, w)) | |
else: | |
image_rgba = resize_foreground(image_rgba, 0.9) | |
image_rgba.save('test.png') | |
image, alpha = rgba_to_white_background(image_rgba) | |
image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1) | |
alpha = v2.functional.resize(alpha, 512, interpolation=0, antialias=True).clamp(0, 1) | |
images.append(image) | |
alphas.append(alpha) | |
images = torch.stack(images, dim=0) | |
alphas = torch.stack(alphas, dim=0) | |
images_vis = v2.functional.to_pil_image(rearrange(images, 'n c h w -> c h (n w)')) | |
# run reconstruction | |
legends = [f'V{i}' for i in range(1, 1+len(images))] | |
gs_vis_path, video_path, mesh_fine_path, fig = self.run_freesplatter_object( | |
images, alphas, legends=legends, gs_type=gs_type, mesh_reduction=mesh_reduction) | |
return images_vis, gs_vis_path, video_path, mesh_fine_path, fig | |
def run_freesplatter_object( | |
self, | |
images, | |
alphas, | |
legends=None, | |
gs_type='2DGS', | |
mesh_reduction=0.5, | |
): | |
torch.cuda.empty_cache() | |
device = self.device | |
freesplatter = self.freesplatter_2dgs if gs_type == '2DGS' else self.freesplatter | |
images, alphas = images.to(device), alphas.to(device) | |
t0 = time.time() | |
with torch.inference_mode(): | |
gaussians = freesplatter.forward_gaussians(images.unsqueeze(0)) | |
t1 = time.time() | |
# estimate camera parameters and visualize | |
c2ws_pred, focals_pred = freesplatter.estimate_poses(images, gaussians, masks=alphas, use_first_focal=True, pnp_iter=10) | |
fig = self.visualize_cameras_object(images, c2ws_pred, focals_pred, legends=legends) | |
t2 = time.time() | |
# save gaussians | |
gs_vis_path = os.path.join(self.output_dir, 'gs_vis.ply') | |
save_gaussian(gaussians, gs_vis_path, freesplatter, opacity_threshold=5e-3, pad_2dgs_scale=True) | |
print(f'Save gaussian at {gs_vis_path}') | |
# render video | |
with torch.inference_mode(): | |
c2ws_video = get_circular_cameras(N=120, elevation=0, radius=2.0, normalize=True).to(device) | |
fx = fy = focals_pred.mean() / 512.0 | |
cx = cy = torch.ones_like(fx) * 0.5 | |
fxfycxcy_video = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_video.shape[0], 1).to(device) | |
video_frames = freesplatter.forward_renderer( | |
gaussians, | |
c2ws_video.unsqueeze(0), | |
fxfycxcy_video.unsqueeze(0), | |
)['image'][0].clamp(0, 1) | |
video_path = os.path.join(self.output_dir, 'gs.mp4') | |
save_video(video_frames, video_path, fps=30) | |
print(f'Save video at {video_path}') | |
t3 = time.time() | |
# extract mesh | |
with torch.inference_mode(): | |
c2ws_fusion = get_fibonacci_cameras(N=120, radius=2.0) | |
c2ws_fusion, _ = normalize_cameras(c2ws_fusion, camera_position=torch.tensor([0., -2., 0.]), camera_system='opencv') | |
c2ws_fusion = c2ws_fusion.to(device) | |
c2ws_fusion_reference = torch.linalg.inv(c2ws_fusion[0:1]) @ c2ws_fusion | |
fx = fy = focals_pred.mean() / 512.0 | |
cx = cy = torch.ones_like(fx) * 0.5 | |
fov = np.rad2deg(np.arctan(0.5 / fx.item())) * 2 | |
fxfycxcy_fusion = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_fusion.shape[0], 1).to(device) | |
fusion_render_results = freesplatter.forward_renderer( | |
gaussians, | |
c2ws_fusion_reference.unsqueeze(0), | |
fxfycxcy_fusion.unsqueeze(0), | |
) | |
images_fusion = fusion_render_results['image'][0].clamp(0, 1).permute(0, 2, 3, 1) | |
alphas_fusion = fusion_render_results['alpha'][0].permute(0, 2, 3, 1) | |
depths_fusion = fusion_render_results['depth'][0].permute(0, 2, 3, 1) | |
fusion_images = (images_fusion.detach().cpu().numpy()*255).clip(0, 255).astype(np.uint8) | |
fusion_depths = depths_fusion.detach().cpu().numpy() | |
fusion_alphas = alphas_fusion.detach().cpu().numpy() | |
fusion_masks = (fusion_alphas > 1e-2).astype(np.uint8) | |
fusion_depths = fusion_depths * fusion_masks - np.ones_like(fusion_depths) * (1 - fusion_masks) | |
fusion_c2ws = c2ws_fusion.detach().cpu().numpy() | |
mesh_path = os.path.join(self.output_dir, 'mesh.obj') | |
rgbd_to_mesh( | |
fusion_images, fusion_depths, fusion_c2ws, fov, mesh_path, cam_elev_thr=-90) # use all angles for tsdf fusion | |
print(f'Save mesh at {mesh_path}') | |
t4 = time.time() | |
# optimize texture | |
cam_pos = c2ws_fusion[:, :3, 3].cpu().numpy() | |
cam_inds = torch.from_numpy(fpsample.fps_sampling(cam_pos, 16).astype(int)).to(device=device) | |
alphas_bake = alphas_fusion[cam_inds] | |
images_bake = (images_fusion[cam_inds] - (1 - alphas_bake)) / alphas_bake.clamp(min=1e-6) | |
out_mesh = Mesh.load(str(mesh_path), auto_uv=False, device='cpu') | |
max_faces = 50000 | |
mesh_reduction = max(1 - max_faces / out_mesh.f.shape[0], mesh_reduction) | |
mesh_verts_, mesh_faces_ = fast_simplification.simplify( | |
out_mesh.v.numpy(), out_mesh.f.numpy(), target_reduction=mesh_reduction) | |
mesh_verts = out_mesh.v.new_tensor(mesh_verts_, dtype=torch.float32).requires_grad_(False) | |
mesh_faces = out_mesh.f.new_tensor(mesh_faces_).requires_grad_(False) | |
out_mesh = Mesh(v=mesh_verts, f=mesh_faces) | |
out_mesh.auto_normal() | |
out_mesh.auto_uv() | |
out_mesh = out_mesh.to(device) | |
intrinsics = fxfycxcy_fusion[0:1].clone() | |
intrinsics[..., [0, 2]] *= images_bake.shape[-2] | |
intrinsics[..., [1, 3]] *= images_bake.shape[-3] | |
out_mesh = self.mesh_renderer.bake_multiview( | |
[out_mesh], | |
images_bake.unsqueeze(0), | |
alphas_bake.unsqueeze(0), | |
c2ws_fusion[cam_inds].unsqueeze(0), | |
intrinsics.unsqueeze(0), | |
)[0] | |
mesh_fine_path = os.path.join(self.output_dir, 'mesh.glb') | |
# align mesh orientation | |
out_mesh.v = out_mesh.v.clone() | |
out_mesh.vn = out_mesh.vn.clone() | |
out_mesh.v[..., 0] = -out_mesh.v[..., 0] | |
out_mesh.vn[..., 0] = -out_mesh.vn[..., 0] | |
out_mesh.v[..., [1, 2]] = out_mesh.v[..., [2, 1]] | |
out_mesh.vn[..., [1, 2]] = out_mesh.vn[..., [2, 1]] | |
out_mesh.write(mesh_fine_path, flip_yz=False) | |
print(f"Save optimized mesh at {mesh_fine_path}") | |
t5 = time.time() | |
print(f'Generate Gaussians: {t1-t0:.2f} seconds.') | |
print(f'Estimate poses: {t2-t1:.2f} seconds.') | |
print(f'Generate video: {t3-t2:.2f} seconds.') | |
print(f'Generate mesh: {t4-t3:.2f} seconds.') | |
print(f'Optimize mesh: {t5-t4:.2f} seconds.') | |
return gs_vis_path, video_path, mesh_fine_path, fig | |
def visualize_cameras_object( | |
self, | |
images, | |
c2ws, | |
focal_length, | |
legends=None, | |
): | |
images = (images.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype(np.uint8) | |
cam2world = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').to(c2ws) | |
transform = cam2world @ torch.linalg.inv(c2ws[0:1]) | |
c2ws = transform @ c2ws | |
c2ws = c2ws.detach().cpu().numpy() | |
c2ws[:, :, 1:3] *= -1 # opencv to opengl | |
focal_length = focal_length.mean().detach().cpu().numpy() | |
fov = np.rad2deg(np.arctan(256.0 / focal_length)) * 2 | |
colors = [cmap(i / len(images))[:3] for i in range(len(images))] | |
legends = [None] * len(images) if legends is None else legends | |
viz = CameraVisualizer(c2ws, legends, colors, images=images) | |
fig = viz.update_figure( | |
3, | |
height=320, | |
line_width=5, | |
base_radius=1, | |
zoom_scale=1, | |
fov_deg=fov, | |
show_grid=True, | |
show_ticklabels=True, | |
show_background=True, | |
y_up=False, | |
) | |
return fig | |
# FreeSplatter-S | |
def run_views_to_scene( | |
self, | |
image1, | |
image2, | |
cache_dir=None, | |
): | |
torch.cuda.empty_cache() | |
self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}') | |
os.makedirs(self.output_dir, exist_ok=True) | |
# preprocesss images | |
images = [] | |
for image in [image1, image2]: | |
w, h = image.size | |
image = torch.from_numpy(np.asarray(image) / 255.0).float() | |
image = rearrange(image, 'h w c -> c h w') | |
image = v2.functional.center_crop(image, min(h, w)) | |
image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1) | |
images.append(image) | |
images = torch.stack(images, dim=0) | |
images_vis = v2.functional.to_pil_image(rearrange(images, 'n c h w -> c h (n w)')) | |
# run reconstruction | |
legends = [f'V{i}' for i in range(1, 1+len(images))] | |
gs_vis_path, video_path, fig = self.run_freesplatter_scene(images, legends=legends) | |
return images_vis, gs_vis_path, video_path, fig | |
def run_freesplatter_scene( | |
self, | |
images, | |
legends=None, | |
): | |
torch.cuda.empty_cache() | |
freesplatter = self.freesplatter_scene | |
device = self.device | |
images = images.to(device) | |
t0 = time.time() | |
with torch.inference_mode(): | |
gaussians = freesplatter.forward_gaussians(images.unsqueeze(0)) | |
t1 = time.time() | |
# estimate camera parameters | |
c2ws_pred, focals_pred = freesplatter.estimate_poses(images, gaussians, use_first_focal=True, pnp_iter=10) | |
# rescale cameras to make the baseline equal to 1.0 | |
baseline_pred = (c2ws_pred[:, :3, 3] - c2ws_pred[:1, :3, 3]).norm() + 1e-2 | |
scale_factor = 1.0 / baseline_pred | |
c2ws_pred = c2ws_pred.clone() | |
c2ws_pred[:, :3, 3] *= scale_factor | |
# visualize cameras | |
fig = self.visualize_cameras_scene(images, c2ws_pred, focals_pred, legends=legends) | |
t2 = time.time() | |
# save gaussians | |
gs_vis_path = os.path.join(self.output_dir, 'gs_vis.ply') | |
save_gaussian(gaussians, gs_vis_path, freesplatter, opacity_threshold=5e-3) | |
print(f'Save gaussian at {gs_vis_path}') | |
# render video | |
with torch.inference_mode(): | |
c2ws_video = generate_interpolated_path(c2ws_pred.detach().cpu().numpy()[:, :3, :], n_interp=120) | |
c2ws_video = torch.cat([ | |
torch.from_numpy(c2ws_video), | |
torch.tensor([0, 0, 0, 1]).reshape(1, 1, 4).repeat(c2ws_video.shape[0], 1, 1) | |
], dim=1).to(gaussians) | |
fx = fy = focals_pred.mean() / 512.0 | |
cx = cy = torch.ones_like(fx) * 0.5 | |
fxfycxcy_video = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_video.shape[0], 1).to(device) | |
video_frames = freesplatter.forward_renderer( | |
gaussians, | |
c2ws_video.unsqueeze(0), | |
fxfycxcy_video.unsqueeze(0), | |
rescale=scale_factor.reshape(1).to(gaussians) | |
)['image'][0].clamp(0, 1) | |
video_path = os.path.join(self.output_dir, 'gs.mp4') | |
save_video(video_frames, video_path, fps=30) | |
print(f'Save video at {video_path}') | |
t3 = time.time() | |
print(f'Generate Gaussians: {t1-t0:.2f} seconds.') | |
print(f'Estimate poses: {t2-t1:.2f} seconds.') | |
print(f'Generate video: {t3-t2:.2f} seconds.') | |
return gs_vis_path, video_path, fig | |
def visualize_cameras_scene( | |
self, | |
images, | |
c2ws, | |
focal_length, | |
legends=None, | |
): | |
images = (images.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype(np.uint8) | |
c2ws = c2ws.detach().cpu().numpy() | |
c2ws[:, :, 1:3] *= -1 | |
focal_length = focal_length.mean().detach().cpu().numpy() | |
fov = np.rad2deg(np.arctan(256.0 / focal_length)) * 2 | |
colors = [cmap(i / len(images))[:3] for i in range(len(images))] | |
legends = [None] * len(images) if legends is None else legends | |
viz = CameraVisualizer(c2ws, legends, colors, images=images) | |
fig = viz.update_figure( | |
2, | |
height=320, | |
line_width=5, | |
base_radius=1, | |
zoom_scale=1, | |
fov_deg=fov, | |
show_grid=True, | |
show_ticklabels=True, | |
show_background=True, | |
y_up=False, | |
) | |
return fig |