Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import pytesseract | |
def extract_number_plate_text(image): | |
# Convert PIL image to OpenCV format | |
image = np.array(image) | |
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) | |
# Apply preprocessing | |
filtered = cv2.bilateralFilter(gray, 11, 17, 17) # Noise reduction | |
edged = cv2.Canny(filtered, 30, 200) # Edge detection | |
# Find contours | |
contours, _ = cv2.findContours(edged, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10] | |
plate_text = "No plate detected" | |
# Loop over contours to find the number plate | |
for contour in contours: | |
perimeter = cv2.arcLength(contour, True) | |
approx = cv2.approxPolyDP(contour, 0.02 * perimeter, True) | |
if len(approx) == 4: # Possible number plate | |
x, y, w, h = cv2.boundingRect(approx) | |
plate_region = gray[y:y+h, x:x+w] | |
# Preprocessing for OCR | |
plate_region = cv2.threshold(plate_region, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] | |
# Extract text using Tesseract | |
plate_text = pytesseract.image_to_string(plate_region, config="--psm 8").strip() | |
break | |
return plate_text |