ThaparGPT / server.py
0504ankitsharma's picture
Upload server.py
abf5123 verified
CHROMA_PATH = "chroma"
DATA_PATH = "data"
from fastapi import FastAPI
import argparse
import os
import shutil
from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from get_embedding_function import get_embedding_function
from langchain_community.vectorstores import Chroma
from langchain.prompts import ChatPromptTemplate
from langchain_community.llms.ollama import Ollama
from pydantic import BaseModel
PROMPT_TEMPLATE = """
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
app = FastAPI()
from langchain_community.embeddings.ollama import OllamaEmbeddings
from langchain_community.embeddings.bedrock import BedrockEmbeddings
#
def get_embedding_function():
# embeddings = BedrockEmbeddings(
# credentials_profile_name="default", region_name="us-east-1"
# )
embeddings = OllamaEmbeddings(model="nomic-embed-text")
return embeddings
def load_documents():
document_loader = PyPDFDirectoryLoader(DATA_PATH)
return document_loader.load()
def split_documents(documents: list[Document]):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=80,
length_function=len,
is_separator_regex=False,
)
return text_splitter.split_documents(documents)
def add_to_chroma(chunks: list[Document]):
# Load the existing database.
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=get_embedding_function()
)
# Calculate Page IDs.
chunks_with_ids = calculate_chunk_ids(chunks)
# Add or Update the documents.
existing_items = db.get(include=[]) # IDs are always included by default
existing_ids = set(existing_items["ids"])
print(f"Number of existing documents in DB: {len(existing_ids)}")
# Only add documents that don't exist in the DB.
new_chunks = []
for chunk in chunks_with_ids:
if chunk.metadata["id"] not in existing_ids:
new_chunks.append(chunk)
if len(new_chunks):
print(f"πŸ‘‰ Adding new documents: {len(new_chunks)}")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
db.add_documents(new_chunks, ids=new_chunk_ids)
db.persist()
else:
print("βœ… No new documents to add")
def calculate_chunk_ids(chunks):
# This will create IDs like "data/monopoly.pdf:6:2"
# Page Source : Page Number : Chunk Index
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
# If the page ID is the same as the last one, increment the index.
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
# Calculate the chunk ID.
chunk_id = f"{current_page_id}:{current_chunk_index}"
last_page_id = current_page_id
# Add it to the page meta-data.
chunk.metadata["id"] = chunk_id
return chunks
def clear_database():
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
return {""}
@app.get("/")
def greet_json():
return {"Hello": "World!"}
class QueryRequest(BaseModel):
query_text: str
@app.get("/train")
def train():
# Check if the database should be cleared (using the --clear flag).
# parser = argparse.ArgumentParser()
# parser.add_argument("--reset", action="store_true", help="Reset the database.")
# args = parser.parse_args()
# if args.reset:
# print("✨ Clearing Database")
# clear_database()
# Create (or update) the data store.
documents = load_documents()
chunks = split_documents(documents)
add_to_chroma(chunks)
@app.get("/cleardb")
def cleardb():
# Check if the database should be cleared (using the --clear flag).
# parser = argparse.ArgumentParser()
# parser.add_argument("--reset", action="store_true", help="Reset the database.")
# args = parser.parse_args()
# if args.reset:
print("✨ Clearing Database")
clear_database()
@app.get("/query")
def query(request: QueryRequest):
query_text = request.query_text
# Prepare the DB.
embedding_function = get_embedding_function()
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function)
# Search the DB.
results = db.similarity_search_with_score(query_text, k=5)
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
# print(prompt)
model = Ollama(model="mistral")
response_text = model.invoke(prompt)
sources = [doc.metadata.get("id", None) for doc, _score in results]
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
return response_text