Spaces:
Build error
Build error
CHROMA_PATH = "chroma" | |
DATA_PATH = "data" | |
from fastapi import FastAPI | |
import argparse | |
import os | |
import shutil | |
from langchain_community.document_loaders.pdf import PyPDFDirectoryLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain.schema.document import Document | |
from get_embedding_function import get_embedding_function | |
from langchain_community.vectorstores import Chroma | |
from langchain.prompts import ChatPromptTemplate | |
from langchain_community.llms.ollama import Ollama | |
from pydantic import BaseModel | |
PROMPT_TEMPLATE = """ | |
Answer the question based only on the following context: | |
{context} | |
--- | |
Answer the question based on the above context: {question} | |
""" | |
app = FastAPI() | |
from langchain_community.embeddings.ollama import OllamaEmbeddings | |
from langchain_community.embeddings.bedrock import BedrockEmbeddings | |
# | |
def get_embedding_function(): | |
# embeddings = BedrockEmbeddings( | |
# credentials_profile_name="default", region_name="us-east-1" | |
# ) | |
embeddings = OllamaEmbeddings(model="nomic-embed-text") | |
return embeddings | |
def load_documents(): | |
document_loader = PyPDFDirectoryLoader(DATA_PATH) | |
return document_loader.load() | |
def split_documents(documents: list[Document]): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=800, | |
chunk_overlap=80, | |
length_function=len, | |
is_separator_regex=False, | |
) | |
return text_splitter.split_documents(documents) | |
def add_to_chroma(chunks: list[Document]): | |
# Load the existing database. | |
db = Chroma( | |
persist_directory=CHROMA_PATH, embedding_function=get_embedding_function() | |
) | |
# Calculate Page IDs. | |
chunks_with_ids = calculate_chunk_ids(chunks) | |
# Add or Update the documents. | |
existing_items = db.get(include=[]) # IDs are always included by default | |
existing_ids = set(existing_items["ids"]) | |
print(f"Number of existing documents in DB: {len(existing_ids)}") | |
# Only add documents that don't exist in the DB. | |
new_chunks = [] | |
for chunk in chunks_with_ids: | |
if chunk.metadata["id"] not in existing_ids: | |
new_chunks.append(chunk) | |
if len(new_chunks): | |
print(f"π Adding new documents: {len(new_chunks)}") | |
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] | |
db.add_documents(new_chunks, ids=new_chunk_ids) | |
db.persist() | |
else: | |
print("β No new documents to add") | |
def calculate_chunk_ids(chunks): | |
# This will create IDs like "data/monopoly.pdf:6:2" | |
# Page Source : Page Number : Chunk Index | |
last_page_id = None | |
current_chunk_index = 0 | |
for chunk in chunks: | |
source = chunk.metadata.get("source") | |
page = chunk.metadata.get("page") | |
current_page_id = f"{source}:{page}" | |
# If the page ID is the same as the last one, increment the index. | |
if current_page_id == last_page_id: | |
current_chunk_index += 1 | |
else: | |
current_chunk_index = 0 | |
# Calculate the chunk ID. | |
chunk_id = f"{current_page_id}:{current_chunk_index}" | |
last_page_id = current_page_id | |
# Add it to the page meta-data. | |
chunk.metadata["id"] = chunk_id | |
return chunks | |
def clear_database(): | |
if os.path.exists(CHROMA_PATH): | |
shutil.rmtree(CHROMA_PATH) | |
return {""} | |
def greet_json(): | |
return {"Hello": "World!"} | |
class QueryRequest(BaseModel): | |
query_text: str | |
def train(): | |
# Check if the database should be cleared (using the --clear flag). | |
# parser = argparse.ArgumentParser() | |
# parser.add_argument("--reset", action="store_true", help="Reset the database.") | |
# args = parser.parse_args() | |
# if args.reset: | |
# print("β¨ Clearing Database") | |
# clear_database() | |
# Create (or update) the data store. | |
documents = load_documents() | |
chunks = split_documents(documents) | |
add_to_chroma(chunks) | |
def cleardb(): | |
# Check if the database should be cleared (using the --clear flag). | |
# parser = argparse.ArgumentParser() | |
# parser.add_argument("--reset", action="store_true", help="Reset the database.") | |
# args = parser.parse_args() | |
# if args.reset: | |
print("β¨ Clearing Database") | |
clear_database() | |
def query(request: QueryRequest): | |
query_text = request.query_text | |
# Prepare the DB. | |
embedding_function = get_embedding_function() | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) | |
# Search the DB. | |
results = db.similarity_search_with_score(query_text, k=5) | |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) | |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) | |
prompt = prompt_template.format(context=context_text, question=query_text) | |
# print(prompt) | |
model = Ollama(model="mistral") | |
response_text = model.invoke(prompt) | |
sources = [doc.metadata.get("id", None) for doc, _score in results] | |
formatted_response = f"Response: {response_text}\nSources: {sources}" | |
print(formatted_response) | |
return response_text | |