Spaces:
Sleeping
Sleeping
File size: 5,582 Bytes
8413e92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import gradio as gr
import numpy as np
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.keras.backend as K
from keras.preprocessing import image
from ResUNet import *
from eff import *
from vit import *
# Define the image transformation
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
])
examples1 = [
f"examples/Eff_ViT/Classification_{i}.jpg" for i in range(0, 4)
]
def classification(image):
input_tensor = transform(image).unsqueeze(0).to(CFG.DEVICE) # Add batch dimension
input_batch = input_tensor
# Perform inference
with torch.no_grad():
output1 = efficientnet_model(input_batch).to(CFG.DEVICE)
output2 = efficientnet_model(input_batch).to(CFG.DEVICE)
output3 = vit_model(input_batch).to(CFG.DEVICE)
# You can now use the 'output' tensor as needed (e.g., get predictions)
# print(output)
res1 = torch.softmax(output1, dim=1)
res2 = torch.softmax(output2, dim=1)
res3 = torch.softmax(output3, dim=1)
probs1 = {class_names[i]: float(res1[0][i]) for i in range(len(class_names))}
probs2 = {class_names[i]: float(res2[0][i]) for i in range(len(class_names))}
probs3 = {class_names[i]: float(res3[0][i]) for i in range(len(class_names))}
return probs1, probs2, probs3
classify = gr.Interface(
fn=classification,
inputs=[
gr.Image(label="Image"),
# gr.Radio(["EfficientNetB3", "EfficientNetV2", "ViT"], value="ViT")
],
outputs=[
gr.Label(num_top_classes = 3, label = "EfficientNet-B3"),
gr.Label(num_top_classes = 3, label = "EfficientNet-V2"),
gr.Label(num_top_classes = 3, label = "ViT"),
],
examples=examples1,
cache_examples=True
)
# ---------------------------------------------------------
seg_model = load_model()
seg_model.load_weights("ResUNet-segModel-weights.hdf5")
examples2 = [
f"examples/ResUNet/{i}.jpg" for i in range(5)
]
def detection(img):
org_img = img
img = img *1./255.
#reshaping
img = cv2.resize(img, (256,256))
# converting img into array
img = np.array(img, dtype=np.float64)
#reshaping the image from 256,256,3 to 1,256,256,3
img = np.reshape(img, (1,256,256,3))
#Creating a empty array of shape 1,256,256,1
X = np.empty((1,256,256,3))
# standardising the image
img -= img.mean()
img /= img.std()
#converting the shape of image from 256,256,3 to 1,256,256,3
X[0,] = img
#make prediction of mask
predict = seg_model.predict(X)
pred = np.array(predict[0]).squeeze().round()
img_ = cv2.resize(org_img, (256,256))
img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB)
img_[pred==1] = (0,255,150)
plt.imshow(img_)
plt.axis("off")
image_path = "plot.png"
plt.savefig(image_path)
return gr.update(value=image_path, visible=True)
detect = gr.Interface(
fn=detection,
inputs=[
gr.Image(label="Image")
],
outputs=[
gr.Image(label="Output")
],
examples=examples2,
cache_examples=True
)
# ##########################################
# def data_viewer(label="Pituitary", count=10):
# results = []
# if(label == "Segmentation"):
# for i in range((count//2)+1):
# results.append(f"Images/{label}/original_image_{i}.png")
# results.append(f"Images/{label}/image_with_mask_{i}.png")
# else:
# for i in range(count):
# results.append(f"Images/{label}/{i}.jpg")
# return results
# view_data = gr.Interface(
# fn = data_viewer,
# inputs = [
# gr.Dropdown(
# ["Glioma", "Meningioma", "Pituitary", "Segmentation"], label="Category"
# ),
# gr.Slider(0, 12, value=4, step=2)
# ],
# outputs = [
# gr.Gallery(columns=2),
# ]
# )
# ##########################
from huggingface_hub import InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.2, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
mychatbot = gr.Chatbot(
avatar_images=["Chatbot/user.png", "Chatbot/botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
chatbot = gr.ChatInterface(
fn=generate,
chatbot=mychatbot,
examples=[
"What is Brain Tumor and its types?",
"What is a tumor's grade? What does this mean?",
"What are some of the treatment options for Brain Tumor?",
"What causes brain tumors?",
"If I have a brain tumor, can I pass it on to my children?"
],
)
demo = gr.TabbedInterface([classify, detect, chatbot], ["Classification", "Detection", "ChatBot"])
demo.launch() |