yolov6 / deploy /OpenVINO /export_openvino.py
Theivaprakasham's picture
adding app
be49b0b
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import argparse
import time
import sys
import os
import torch
import torch.nn as nn
import onnx
import subprocess
ROOT = os.getcwd()
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from yolov6.models.yolo import *
from yolov6.models.effidehead import Detect
from yolov6.layers.common import *
from yolov6.utils.events import LOGGER
from yolov6.utils.checkpoint import load_checkpoint
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov6s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
parser.add_argument('--inplace', action='store_true', help='set Detect() inplace=True')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
args = parser.parse_args()
args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
print(args)
t = time.time()
# Check device
cuda = args.device != 'cpu' and torch.cuda.is_available()
device = torch.device('cuda:0' if cuda else 'cpu')
assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
# Load PyTorch model
model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
# Input
img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
# Update model
if args.half:
img, model = img.half(), model.half() # to FP16
model.eval()
for k, m in model.named_modules():
if isinstance(m, Conv): # assign export-friendly activations
if isinstance(m.act, nn.SiLU):
m.act = SiLU()
elif isinstance(m, Detect):
m.inplace = args.inplace
y = model(img) # dry run
# ONNX export
try:
LOGGER.info('\nStarting to export ONNX...')
export_file = args.weights.replace('.pt', '.onnx') # filename
torch.onnx.export(model, img, export_file, verbose=False, opset_version=12,
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True,
input_names=['image_arrays'],
output_names=['outputs'],
)
# Checks
onnx_model = onnx.load(export_file) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
LOGGER.info(f'ONNX export success, saved as {export_file}')
except Exception as e:
LOGGER.info(f'ONNX export failure: {e}')
# OpenVINO export
try:
LOGGER.info('\nStarting to export OpenVINO...')
import_file = args.weights.replace('.pt', '.onnx')
export_dir = str(import_file).replace('.onnx', '_openvino')
cmd = f"mo --input_model {import_file} --output_dir {export_dir} --data_type {'FP16' if args.half else 'FP32'}"
subprocess.check_output(cmd.split())
LOGGER.info(f'OpenVINO export success, saved as {export_dir}')
except Exception as e:
LOGGER.info(f'OpenVINO export failure: {e}')
# Finish
LOGGER.info('\nExport complete (%.2fs)' % (time.time() - t))