File size: 1,286 Bytes
a828de0 e541ad6 a828de0 e541ad6 a828de0 e541ad6 a828de0 e541ad6 a828de0 e541ad6 a828de0 e541ad6 a828de0 e541ad6 a828de0 e541ad6 a828de0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import os
import re
from dotenv import load_dotenv
load_dotenv()
from langchain.agents.openai_assistant import OpenAIAssistantRunnable
from langchain.agents import AgentExecutor
from langchain.schema import HumanMessage, AIMessage
import gradio
api_key = os.getenv('OPENAI_API_KEY')
extractor_agent = os.getenv('ASSISTANT_ID_DECASTRO')
extractor_llm = OpenAIAssistantRunnable(assistant_id=extractor_agent, api_key=api_key, as_agent=True)
def remove_citation(text):
# Define the regex pattern to match the citation format 【number†text】
pattern = r"【\d+†\w+】"
# Replace the pattern with an empty string
return re.sub(pattern, "📚", text)
def predict(message, history):
history_langchain_format = []
for human, ai in history:
history_langchain_format.append(HumanMessage(content=human))
history_langchain_format.append(AIMessage(content=ai))
history_langchain_format.append(HumanMessage(content=message))
gpt_response = extractor_llm.invoke({"content": message})
output = gpt_response.return_values["output"]
non_cited_output = remove_citation(output)
return non_cited_output
chat = gradio.ChatInterface(predict, title="Solution Specifier", description="testing for the time being")
chat.launch(share=True) |