Spaces:
Runtime error
Runtime error
# import os | |
# import sys | |
# from random import randint | |
# import time | |
# import uuid | |
# import argparse | |
# import streamlit as st | |
# sys.path.append(os.path.abspath("../supv")) | |
# from matumizi.util import * | |
# from mcclf import * | |
import os | |
import sys | |
from random import randint | |
import time | |
import uuid | |
import argparse | |
import pandas as pd | |
import streamlit as st | |
# Add the directory containing the required modules to sys.path | |
sys.path.append(os.path.abspath("../supv")) | |
from matumizi.util import * | |
from mcclf import * | |
from markov_chain_classifier import MarkovChainClassifier | |
def genVisitHistory(numUsers, convRate, label): | |
for i in range(numUsers): | |
userID = genID(12) | |
userSess = [] | |
userSess.append(userID) | |
conv = randint(0, 100) | |
if (conv < convRate): | |
#converted | |
if (label): | |
if (randint(0,100) < 90): | |
userSess.append("T") | |
else: | |
userSess.append("F") | |
numSession = randint(2, 20) | |
for j in range(numSession): | |
sess = randint(0, 100) | |
if (sess <= 15): | |
elapsed = "H" | |
elif (sess > 15 and sess <= 40): | |
elapsed = "M" | |
else: | |
elapsed = "L" | |
sess = randint(0, 100) | |
if (sess <= 15): | |
duration = "L" | |
elif (sess > 15 and sess <= 40): | |
duration = "M" | |
else: | |
duration = "H" | |
sessSummary = elapsed + duration | |
userSess.append(sessSummary) | |
else: | |
#not converted | |
if (label): | |
if (randint(0,100) < 90): | |
userSess.append("F") | |
else: | |
userSess.append("T") | |
numSession = randint(2, 12) | |
for j in range(numSession): | |
sess = randint(0, 100) | |
if (sess <= 20): | |
elapsed = "L" | |
elif (sess > 20 and sess <= 45): | |
elapsed = "M" | |
else: | |
elapsed = "H" | |
sess = randint(0, 100) | |
if (sess <= 20): | |
duration = "H" | |
elif (sess > 20 and sess <= 45): | |
duration = "M" | |
else: | |
duration = "L" | |
sessSummary = elapsed + duration | |
userSess.append(sessSummary) | |
print(",".join(userSess)) | |
# def trainModel(mlfpath): | |
# model = MarkovChainClassifier(mlfpath) | |
# model.train() | |
# def predictModel(mlfpath): | |
# model = MarkovChainClassifier(mlfpath) | |
# model.predict() | |
def trainModel(mlfpath): | |
model = MarkovChainClassifier(mlfpath) | |
model.train() | |
return model | |
def predictModel(mlfpath, userID): | |
model = MarkovChainClassifier(mlfpath) | |
res = model.predict(userID) | |
return res | |
# Define MLF path and user ID | |
mlfpath = "mcclf_cc.properties" | |
userID = "56C96HWLR9ZO" | |
# Load the Markov chain classifier model | |
model = MarkovChainClassifier('cc.mod') | |
# Perform prediction | |
result = model.predict(userID) | |
# Display the prediction result | |
st.title("Conversion Prediction App") | |
st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.") | |
st.write("Prediction Result for User ID: ", userID) | |
st.write("Conversion: ", result) | |
# if op == "Predict": | |
# st.write("Enter the parameters to make a prediction:") | |
# userID = st.text_input("User ID") | |
# st.write("Click the button below to make a prediction") | |
# if st.button("Predict"): | |
# prediction = predictModel(mlfpath, userID) | |
# st.write("Prediction:", prediction) | |
# if __name__ == "__main__": | |
# st.title("Conversion Prediction App") | |
# st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.") | |
# op = st.sidebar.selectbox("Select Operation", ["Generate Visit History", "Train Model", "Predict"]) | |
# if op == "Generate Visit History": | |
# st.write("Enter the parameters to generate the visit history:") | |
# numUsers = st.number_input("Number of users", min_value=1, max_value=1000, value=100, step=1) | |
# convRate = st.number_input("Conversion Rate (in percentage)", min_value=0, max_value=100, value=10, step=1) | |
# label = st.checkbox("Add Labels") | |
# st.write("Click the button below to generate the visit history") | |
# if st.button("Generate"): | |
# genVisitHistory(numUsers, convRate, label) | |
# elif op == "Train Model": | |
# st.write("Train the model using the following parameters:") | |
# mlfpath = st.text_input("MLF Path") | |
# if st.button("Train"): | |
# trainModel(mlfpath) | |
# elif op == "Predict": | |
# st.write("Predict using the trained model:") | |
# mlfpath = st.text_input("MLF Path") | |
# userID = st.text_input("User ID") | |
# if st.button("Predict"): | |
# result = predictModel(mlfpath, userID) | |
# st.write("Prediction Result: ", result) | |
# def main(): | |
# st.title("Markov Chain Classifier") | |
# # Add input fields for command line arguments | |
# op = st.selectbox("Operation", ["gen", "train", "pred"]) | |
# numUsers = st.slider("Number of Users", 1, 1000, 100) | |
# convRate = st.slider("Conversion Rate", 1, 100, 10) | |
# label = st.checkbox("Add Label") | |
# mlfpath = st.text_input("ML Config File Path", value="false") | |
# # Call functions based on selected operation | |
# if op == "gen": | |
# st.button("Generate Visit History", on_click=lambda: genVisitHistory(numUsers, convRate, label)) | |
# elif op == "train": | |
# st.button("Train Model", on_click=lambda: trainModel(mlfpath)) | |
# elif op == "pred": | |
# st.button("Predict Model", on_click=lambda: predictModel(mlfpath)) | |
# if __name__ == "__main__": | |
# main() |