Priyanka-Kumavat-At-TE commited on
Commit
0a3ff2c
·
1 Parent(s): 60f8dcb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -219
app.py CHANGED
@@ -1,219 +0,0 @@
1
- # # import os
2
- # # import sys
3
- # # from random import randint
4
- # # import time
5
- # # import uuid
6
- # # import argparse
7
- # # import streamlit as st
8
- # # sys.path.append(os.path.abspath("../supv"))
9
- # # from matumizi.util import *
10
- # # from mcclf import *
11
-
12
- # import os
13
- # import sys
14
- # from random import randint
15
- # import time
16
- # import uuid
17
- # import argparse
18
- # import pandas as pd
19
- # import streamlit as st
20
-
21
- # # Add the directory containing the required modules to sys.path
22
- # sys.path.append(os.path.abspath("../supv"))
23
- # from matumizi.util import *
24
- # from mcclf import *
25
- # # from markov_chain_classifier import MarkovChainClassifier
26
-
27
- # def genVisitHistory(numUsers, convRate, label):
28
- # for i in range(numUsers):
29
- # userID = genID(12)
30
- # userSess = []
31
- # userSess.append(userID)
32
-
33
- # conv = randint(0, 100)
34
- # if (conv < convRate):
35
- # #converted
36
- # if (label):
37
- # if (randint(0,100) < 90):
38
- # userSess.append("T")
39
- # else:
40
- # userSess.append("F")
41
-
42
-
43
- # numSession = randint(2, 20)
44
- # for j in range(numSession):
45
- # sess = randint(0, 100)
46
- # if (sess <= 15):
47
- # elapsed = "H"
48
- # elif (sess > 15 and sess <= 40):
49
- # elapsed = "M"
50
- # else:
51
- # elapsed = "L"
52
-
53
- # sess = randint(0, 100)
54
- # if (sess <= 15):
55
- # duration = "L"
56
- # elif (sess > 15 and sess <= 40):
57
- # duration = "M"
58
- # else:
59
- # duration = "H"
60
-
61
- # sessSummary = elapsed + duration
62
- # userSess.append(sessSummary)
63
-
64
-
65
- # else:
66
- # #not converted
67
- # if (label):
68
- # if (randint(0,100) < 90):
69
- # userSess.append("F")
70
- # else:
71
- # userSess.append("T")
72
-
73
- # numSession = randint(2, 12)
74
- # for j in range(numSession):
75
- # sess = randint(0, 100)
76
- # if (sess <= 20):
77
- # elapsed = "L"
78
- # elif (sess > 20 and sess <= 45):
79
- # elapsed = "M"
80
- # else:
81
- # elapsed = "H"
82
-
83
- # sess = randint(0, 100)
84
- # if (sess <= 20):
85
- # duration = "H"
86
- # elif (sess > 20 and sess <= 45):
87
- # duration = "M"
88
- # else:
89
- # duration = "L"
90
-
91
- # sessSummary = elapsed + duration
92
- # userSess.append(sessSummary)
93
-
94
- # print(",".join(userSess))
95
-
96
- # # def trainModel(mlfpath):
97
- # # model = MarkovChainClassifier(mlfpath)
98
- # # model.train()
99
-
100
- # # def predictModel(mlfpath):
101
- # # model = MarkovChainClassifier(mlfpath)
102
- # # model.predict()
103
-
104
- # def trainModel(mlfpath):
105
- # model = MarkovChainClassifier(mlfpath)
106
- # model.train()
107
- # return model
108
-
109
-
110
- # def predictModel(mlfpath, userID):
111
- # model = MarkovChainClassifier(mlfpath)
112
- # res = model.predict(userID)
113
- # return res
114
-
115
-
116
- # # Define MLF path and user ID
117
- # mlfpath = "mcclf_cc.properties"
118
- # userID = "56C96HWLR9ZO"
119
-
120
- # # Load the Markov chain classifier model
121
- # model = MarkovChainClassifier('cc.mod')
122
-
123
- # # Perform prediction
124
- # result = model.predict(userID)
125
-
126
- # # Display the prediction result
127
- # st.title("Conversion Prediction App")
128
- # st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
129
- # st.write("Prediction Result for User ID: ", userID)
130
- # st.write("Conversion: ", result)
131
-
132
- import os
133
- import streamlit as st
134
- from mcclf import MarkovChainClassifier
135
-
136
- def app():
137
- st.title("Hugging Face Prediction App")
138
- st.subheader("Enter User ID:")
139
- userID = st.text_input("User ID")
140
-
141
- # Add any other input fields or widgets for user interaction
142
- # Add a "Predict" button
143
- if st.button("Predict"):
144
- # Load the Markov chain classifier model from the model folder
145
- model_path = os.path.join("model", "cc.mod")
146
- model = MarkovChainClassifier(model_path)
147
-
148
- # Call the predict method on the loaded model
149
- prediction = model.predict(userID)
150
-
151
- # Display the prediction result
152
- st.write("Prediction: ", prediction)
153
-
154
- if __name__ == "__main__":
155
- app()
156
-
157
-
158
-
159
-
160
-
161
-
162
-
163
- # # if op == "Predict":
164
- # # st.write("Enter the parameters to make a prediction:")
165
- # # userID = st.text_input("User ID")
166
- # # st.write("Click the button below to make a prediction")
167
- # # if st.button("Predict"):
168
- # # prediction = predictModel(mlfpath, userID)
169
- # # st.write("Prediction:", prediction)
170
-
171
- # # if __name__ == "__main__":
172
- # # st.title("Conversion Prediction App")
173
- # # st.write("Welcome to the Conversion Prediction App. This app uses a Markov chain based classifier to predict whether a customer will convert or not based on their visit history.")
174
-
175
- # # op = st.sidebar.selectbox("Select Operation", ["Generate Visit History", "Train Model", "Predict"])
176
-
177
- # # if op == "Generate Visit History":
178
- # # st.write("Enter the parameters to generate the visit history:")
179
- # # numUsers = st.number_input("Number of users", min_value=1, max_value=1000, value=100, step=1)
180
- # # convRate = st.number_input("Conversion Rate (in percentage)", min_value=0, max_value=100, value=10, step=1)
181
- # # label = st.checkbox("Add Labels")
182
- # # st.write("Click the button below to generate the visit history")
183
- # # if st.button("Generate"):
184
- # # genVisitHistory(numUsers, convRate, label)
185
-
186
- # # elif op == "Train Model":
187
- # # st.write("Train the model using the following parameters:")
188
- # # mlfpath = st.text_input("MLF Path")
189
- # # if st.button("Train"):
190
- # # trainModel(mlfpath)
191
-
192
- # # elif op == "Predict":
193
- # # st.write("Predict using the trained model:")
194
- # # mlfpath = st.text_input("MLF Path")
195
- # # userID = st.text_input("User ID")
196
- # # if st.button("Predict"):
197
- # # result = predictModel(mlfpath, userID)
198
- # # st.write("Prediction Result: ", result)
199
-
200
- # # def main():
201
- # # st.title("Markov Chain Classifier")
202
-
203
- # # # Add input fields for command line arguments
204
- # # op = st.selectbox("Operation", ["gen", "train", "pred"])
205
- # # numUsers = st.slider("Number of Users", 1, 1000, 100)
206
- # # convRate = st.slider("Conversion Rate", 1, 100, 10)
207
- # # label = st.checkbox("Add Label")
208
- # # mlfpath = st.text_input("ML Config File Path", value="false")
209
-
210
- # # # Call functions based on selected operation
211
- # # if op == "gen":
212
- # # st.button("Generate Visit History", on_click=lambda: genVisitHistory(numUsers, convRate, label))
213
- # # elif op == "train":
214
- # # st.button("Train Model", on_click=lambda: trainModel(mlfpath))
215
- # # elif op == "pred":
216
- # # st.button("Predict Model", on_click=lambda: predictModel(mlfpath))
217
-
218
- # # if __name__ == "__main__":
219
- # # main()