Spaces:
Runtime error
Runtime error
File size: 3,838 Bytes
cc1c4e2 d84cbc8 cc1c4e2 9517217 2f4060f 366a1f5 cc1c4e2 d84cbc8 cc1c4e2 2f4060f 7b6a1c7 2f4060f 366a1f5 2f4060f aa6d54e d84cbc8 cc1c4e2 2f4060f cc1c4e2 2f4060f cc1c4e2 2f4060f cc1c4e2 848d2fb aa6d54e 848d2fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
# import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from datetime import timedelta
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
import streamlit as st
import warnings
warnings.filterwarnings('ignore')
st.title("Prediction of Maximum Number of Repairs")
st.sidebar.header('Enter the Components Details here')
st.write("""This model helps to know the probable maximum number of times a component can be repaired.
After which, we can straight away replace it with a new component""")
import pandas as pd
import numpy as np
import pickle
# load the saved model using pickle
with open('max_repair_model.pkl', 'rb') as file:
model = pickle.load(file)
# Load the saved manufacturer label encoder object using pickle
with open('manufacturer_le.pkl', 'rb') as file1:
le = pickle.load(file1)
# DATA from user
def user_report():
manufacturer = st.sidebar.selectbox("Manufacturer",
("JKL Company", "GHI Company","DEF Company","ABC Company","XYZ Company" ))
if manufacturer=='JKL Company':
manufacturer=3
elif manufacturer=="GHI Company":
manufacturer=2
elif manufacturer=="DEF Company":
manufacturer=1
elif manufacturer=="ABC Company":
manufacturer =0
else:
manufacturer=4
component_age = st.sidebar.slider('Component Age (in hours)', 100,250, 300 )
total_operating_hours = st.sidebar.slider('Total Operating Hours)', 400,1500, 500 )
operating_temperature = st.sidebar.slider('Operating Temperature', 70,80, 75 )
humidity = st.sidebar.slider('Humidity', 50,70, 55 )
Vibration_Level = st.sidebar.slider('Vibration Level', 2,4, 2 )
Pressure = st.sidebar.slider('Pressure', 28,32, 30 )
Power_Input_Voltage= st.sidebar.slider('Power Input Voltage (V)',105,120,115)
previous_number_of_repairs = st.sidebar.number_input('Enter the Previous Number of Repairs Undergone 0 to 5 )',min_value=0,max_value=5,step=1)
load_factor = st.sidebar.slider('Load Factor',3,10,4)
engine_speed=st.sidebar.slider('Engine Speed',7000,8000,7800)
Oil_Temperature=st.sidebar.slider('Oil Temperature',170,185,172)
user_report_data = {
'Manufacturer': manufacturer,
'Component_Age': component_age,
'Total_Operating_Hours': total_operating_hours,
'Operating_Temperature': operating_temperature,
'Humidity': humidity,
'Vibration_Level': Vibration_Level,
'Pressure': Pressure,
'Power_Input_Voltage': Power_Input_Voltage,
'Previous_number_of_repairs': previous_number_of_repairs,
'Load_Factor': load_factor,
'Engine_Speed': engine_speed,
'Oil_Temperature':Oil_Temperature
}
report_data = pd.DataFrame(user_report_data, index=[0])
return report_data
#Customer Data
user_data = user_report()
st.subheader("Component Details")
st.write(user_data)
# define the prediction function
def predict_max_number_of_repairs(user_data):
# encode the manufacturer using the loaded LabelEncoder object
#manufacturer_encoded = le.transform([manufacturer])[0]
# make the prediction using the loaded model and input data
predicted_max_number_of_repairs = model.predict(user_data)
# return the predicted max number of repairs as output
return np.round(predicted_max_number_of_repairs[0])
# Function calling
y_pred = int(predict_max_number_of_repairs(user_data))
st.write("Click here to see the Predictions")
if st.button("Predict"):
st.subheader(f"Maximun Number of Repairs is {y_pred} ") |