Spaces:
Runtime error
Runtime error
File size: 1,408 Bytes
a7b127f 5d75077 d197604 a7b127f 066b8cd 9c9a930 066b8cd 2bfce2d 8ceffbb 2bfce2d 8ceffbb 2bfce2d 8ceffbb 26226a5 8ceffbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import numpy as np
import pickle
import warnings
import streamlit as st
warnings.simplefilter("ignore", UserWarning)
MODEL = pickle.load(open('IF_model_anomaly.pkl','rb'))
st.title("Retail Anomaly")
st.write(""" Anomaly detection (or outlier detection) is the identification of rare items, events or observations which raise suspicions by
differing significantly from the majority of the data. Typically, anomalous data can be connected to some kind of problem or rare event such
as e.g. bank fraud, medical problems, structural defects, malfunctioning equipment etc. This connection makes it very interesting to be able
to pick out which data points can be considered anomalies, as identifying these events are typically very interesting from a business perspective.
""")
def prediction(sales,model):
sales = np.float64(sales)
pred = model.predict(sales.reshape(-1,1))[0]
if pred == -1:
return "Outlier"
else:
return "Not outlier"
sales = st.number_input("Enter the Sales Value")
def fun():
st.header(prediction(sales,MODEL))
if st.button("Predict"):
fun()
st.write("""
For a detailed description please look through our Documentation
""")
url = 'https://huggingface.co/spaces/ThirdEyeData/Retail-Anomaly/blob/main/README.md'
st.markdown(f'''
<a href={url}><button style="background-color: #668F45;">Documentation</button></a>
''',
unsafe_allow_html=True) |