Spaces:
Runtime error
Runtime error
File size: 1,368 Bytes
a7b127f 0fab04e bb3e1cd 42603bb a7b127f 9a6c50b 5d75077 d197604 a7b127f 066b8cd 9c9a930 066b8cd 2bfce2d 8ceffbb 2bfce2d 8ceffbb 2bfce2d 8ceffbb 26226a5 8ceffbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import numpy as np
import pickle
import warnings
import streamlit as st
warnings.simplefilter("ignore", UserWarning)
model_path = "IF_model_anomaly.pkl"
MODEL = pickle.load(open(model_path,'rb'))
st.title("Retail Anomaly")
st.write(""" An anomaly (also known as an outlier) is when something happens that is outside of the norm, when it stands out or deviates from what is expected.
There are different kinds of anomalies in an e-commerce setting, they can be product anomaly, conversion anomaly or marketing anomaly.
The model used is Isolation Forest, which is built based on decision trees and is an unsupervised model.
Isolation forests can be used to detect anomaly in high dimensional and large datasets, with no labels.
""")
def prediction(sales,model):
sales = np.float64(sales)
pred = model.predict(sales.reshape(-1,1))[0]
if pred == -1:
return "Outlier"
else:
return "Not outlier"
sales = st.number_input("Enter the Sales Value")
def fun():
st.header(prediction(sales,MODEL))
if st.button("Predict"):
fun()
st.write("""
For a detailed description please look through our Documentation
""")
url = 'https://huggingface.co/spaces/ThirdEyeData/Retail-Anomaly/blob/main/README.md'
st.markdown(f'''
<a href={url}><button style="background-color: #668F45;">Documentation</button></a>
''',
unsafe_allow_html=True) |