File size: 1,368 Bytes
a7b127f
 
 
 
 
 
 
0fab04e
bb3e1cd
42603bb
a7b127f
 
9a6c50b
 
 
 
5d75077
d197604
a7b127f
 
 
 
 
 
 
 
 
066b8cd
 
 
 
9c9a930
066b8cd
2bfce2d
 
8ceffbb
 
2bfce2d
8ceffbb
2bfce2d
8ceffbb
26226a5
8ceffbb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import pickle
import warnings
import streamlit as st

warnings.simplefilter("ignore", UserWarning)

model_path = "IF_model_anomaly.pkl"

MODEL = pickle.load(open(model_path,'rb'))

st.title("Retail Anomaly")
st.write(""" An anomaly (also known as an outlier) is when something happens that is outside of the norm, when it stands out or deviates from what is expected. 
There are different kinds of anomalies in an e-commerce setting, they can be product anomaly, conversion anomaly or marketing anomaly.
The model used is Isolation Forest, which is built based on decision trees and is an unsupervised model.
Isolation forests can be used to detect anomaly in high dimensional and large datasets, with no labels.
""")

def prediction(sales,model):
    sales = np.float64(sales)
    pred = model.predict(sales.reshape(-1,1))[0]
    if pred == -1:
        return "Outlier"
    else:
        return "Not outlier"

sales = st.number_input("Enter the Sales Value")
def fun():
    st.header(prediction(sales,MODEL))
if st.button("Predict"):
    fun()


st.write("""

For a detailed description please look through our Documentation 
""")

url = 'https://huggingface.co/spaces/ThirdEyeData/Retail-Anomaly/blob/main/README.md'

st.markdown(f'''
<a href={url}><button style="background-color: #668F45;">Documentation</button></a>
''',
unsafe_allow_html=True)