test_webpage / app.py
ThorbenF's picture
Update
11bcc1a
raw
history blame
8.69 kB
import gradio as gr
from model_loader import load_model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import re
import numpy as np
import os
import pandas as pd
import copy
import transformers, datasets
from transformers import AutoTokenizer
from transformers import DataCollatorForTokenClassification
from datasets import Dataset
from scipy.special import expit
import requests
# Biopython imports
from Bio.PDB import PDBParser, Select
from Bio.PDB.DSSP import DSSP
from gradio_molecule3d import Molecule3D
# Configuration
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
max_length = 1500
# Load model and move to device
model, tokenizer = load_model(checkpoint, max_length)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
def create_dataset(tokenizer, seqs, labels, checkpoint):
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
dataset = Dataset.from_dict(tokenized)
# Adjust labels based on checkpoint
if ("esm" in checkpoint) or ("ProstT5" in checkpoint):
labels = [l[:max_length-2] for l in labels]
else:
labels = [l[:max_length-1] for l in labels]
dataset = dataset.add_column("labels", labels)
return dataset
def convert_predictions(input_logits):
all_probs = []
for logits in input_logits:
logits = logits.reshape(-1, 2)
probabilities_class1 = expit(logits[:, 1] - logits[:, 0])
all_probs.append(probabilities_class1)
return np.concatenate(all_probs)
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
def predict_protein_sequence(test_one_letter_sequence):
# Sanitize input sequence
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
.replace("B", "X").replace("U", "X") \
.replace("Z", "X").replace("J", "X")
# Prepare sequence for different model types
if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint):
test_one_letter_sequence = " ".join(test_one_letter_sequence)
if "ProstT5" in checkpoint:
test_one_letter_sequence = "<AA2fold> " + test_one_letter_sequence
# Create dummy labels
dummy_labels = [np.zeros(len(test_one_letter_sequence))]
# Create dataset
test_dataset = create_dataset(tokenizer,
[test_one_letter_sequence],
dummy_labels,
checkpoint)
# Select appropriate data collator
data_collator = (DataCollatorForTokenClassification(tokenizer)
if "esm" not in checkpoint and "ProstT5" not in checkpoint
else DataCollatorForTokenClassification(tokenizer))
# Create data loader
test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator)
# Predict
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits.detach().cpu().numpy()
# Process logits
logits = logits[:, :-1] # Remove last element for prot_t5
logits = convert_predictions(logits)
# Normalize and format results
normalized_scores = normalize_scores(logits)
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
return test_one_letter_sequence, normalized_scores
def fetch_pdb(pdb_id):
try:
# Create a directory to store PDB files if it doesn't exist
os.makedirs('pdb_files', exist_ok=True)
# Fetch the PDB structure from RCSB
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
pdb_path = f'pdb_files/{pdb_id}.pdb'
# Download the file
response = requests.get(pdb_url)
if response.status_code == 200:
with open(pdb_path, 'wb') as f:
f.write(response.content)
return pdb_path
else:
return None
except Exception as e:
print(f"Error fetching PDB: {e}")
return None
def extract_protein_sequence(pdb_path):
"""
Extract the longest protein sequence from a PDB file
"""
parser = PDBParser(QUIET=1)
structure = parser.get_structure('protein', pdb_path)
class ProteinSelect(Select):
def accept_residue(self, residue):
# Only accept standard amino acids
standard_aa = set('ACDEFGHIKLMNPQRSTVWY')
return residue.get_resname() in standard_aa
# Find the longest protein chain
longest_sequence = ""
longest_chain = None
for model in structure:
for chain in model:
sequence = ""
for residue in chain:
if Select().accept_residue(residue):
sequence += residue.get_resname()
# Convert 3-letter amino acid codes to 1-letter
aa_dict = {
'ALA':'A', 'CYS':'C', 'ASP':'D', 'GLU':'E', 'PHE':'F',
'GLY':'G', 'HIS':'H', 'ILE':'I', 'LYS':'K', 'LEU':'L',
'MET':'M', 'ASN':'N', 'PRO':'P', 'GLN':'Q', 'ARG':'R',
'SER':'S', 'THR':'T', 'VAL':'V', 'TRP':'W', 'TYR':'Y'
}
one_letter_sequence = ''.join([aa_dict.get(res, 'X') for res in sequence])
# Track the longest sequence
if len(one_letter_sequence) > len(longest_sequence) and \
10 < len(one_letter_sequence) < 1500:
longest_sequence = one_letter_sequence
longest_chain = chain
return longest_sequence, longest_chain
def process_pdb(pdb_id):
# Fetch PDB file
pdb_path = fetch_pdb(pdb_id)
if not pdb_path:
return "Failed to fetch PDB file", None, None
# Extract protein sequence and chain
protein_sequence, chain = extract_protein_sequence(pdb_path)
if not protein_sequence:
return "No suitable protein sequence found", None, None
# Predict binding sites
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
# Prepare representations for coloring residues
reps = []
for i, (res, score) in enumerate(zip(sequence, normalized_scores), start=1):
# Map score to a color gradient from blue (low) to red (high)
color_intensity = int(score * 255)
color = f'rgb({color_intensity}, 0, {255-color_intensity})'
rep = {
"model": 0,
"chain": chain.id,
"resname": res,
"resnum": i,
"style": "cartoon",
"color": color,
"residue_range": f"{i}-{i}",
"around": 0,
"byres": True,
"visible": True
}
reps.append(rep)
# Prepare result string
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
return result_str, reps, pdb_path
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Protein Binding Site Prediction")
with gr.Row():
with gr.Column():
# PDB ID input with default suggestion
pdb_input = gr.Textbox(
value="2IWI",
label="PDB ID",
placeholder="Enter PDB ID here..."
)
# Predict button
predict_btn = gr.Button("Predict Binding Sites")
with gr.Column():
# Binding site predictions output
predictions_output = gr.Textbox(
label="Binding Site Predictions"
)
# 3D Molecule visualization
molecule_output = Molecule3D(
label="Protein Structure",
reps=[] # Start with empty representations
)
# Prediction logic
predict_btn.click(
process_pdb,
inputs=[pdb_input],
outputs=[predictions_output, molecule_output, molecule_output]
)
# Add some example inputs
gr.Markdown("## Examples")
gr.Examples(
examples=[
["2IWI"],
["1ABC"],
["4HHB"]
],
inputs=[pdb_input],
outputs=[predictions_output, molecule_output, molecule_output]
)
demo.launch()