Spaces:
Sleeping
Sleeping
Update
Browse files- .ipynb_checkpoints/app-checkpoint.py +96 -58
- .ipynb_checkpoints/requirements-checkpoint.txt +2 -1
- app.py +96 -58
- requirements.txt +2 -1
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -4,7 +4,6 @@ from model_loader import load_model
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.nn.functional as F
|
7 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
8 |
from torch.utils.data import DataLoader
|
9 |
|
10 |
import re
|
@@ -14,53 +13,25 @@ import pandas as pd
|
|
14 |
import copy
|
15 |
|
16 |
import transformers, datasets
|
17 |
-
from transformers.modeling_outputs import TokenClassifierOutput
|
18 |
-
from transformers.models.t5.modeling_t5 import T5Config, T5PreTrainedModel, T5Stack
|
19 |
-
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
20 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
21 |
-
from transformers.models.esm.modeling_esm import EsmPreTrainedModel, EsmModel
|
22 |
from transformers import AutoTokenizer
|
23 |
-
from transformers import TrainingArguments, Trainer, set_seed
|
24 |
from transformers import DataCollatorForTokenClassification
|
25 |
|
26 |
-
from dataclasses import dataclass
|
27 |
-
from typing import Dict, List, Optional, Tuple, Union
|
28 |
-
|
29 |
-
# for custom DataCollator
|
30 |
-
from transformers.data.data_collator import DataCollatorMixin
|
31 |
-
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
32 |
-
from transformers.utils import PaddingStrategy
|
33 |
-
|
34 |
from datasets import Dataset
|
35 |
|
36 |
from scipy.special import expit
|
37 |
|
38 |
import requests
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
44 |
|
45 |
# Configuration
|
46 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
47 |
max_length = 1500
|
48 |
|
49 |
-
# Default representations for molecule rendering
|
50 |
-
reps = [
|
51 |
-
{
|
52 |
-
"model": 0,
|
53 |
-
"chain": "",
|
54 |
-
"resname": "",
|
55 |
-
"style": "cartoon",
|
56 |
-
"color": "spectrum",
|
57 |
-
"residue_range": "",
|
58 |
-
"around": 0,
|
59 |
-
"byres": False,
|
60 |
-
"visible": True
|
61 |
-
}
|
62 |
-
]
|
63 |
-
|
64 |
# Load model and move to device
|
65 |
model, tokenizer = load_model(checkpoint, max_length)
|
66 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -142,9 +113,7 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
142 |
normalized_scores = normalize_scores(logits)
|
143 |
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
return result_str
|
148 |
|
149 |
def fetch_pdb(pdb_id):
|
150 |
try:
|
@@ -169,14 +138,88 @@ def fetch_pdb(pdb_id):
|
|
169 |
print(f"Error fetching PDB: {e}")
|
170 |
return None
|
171 |
|
172 |
-
def
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
|
|
|
|
|
|
176 |
# Fetch PDB file
|
177 |
pdb_path = fetch_pdb(pdb_id)
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# Create Gradio interface
|
182 |
with gr.Blocks() as demo:
|
@@ -184,18 +227,11 @@ with gr.Blocks() as demo:
|
|
184 |
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
-
#
|
188 |
-
sequence_input = gr.Textbox(
|
189 |
-
lines=2,
|
190 |
-
placeholder="Enter protein sequence here...",
|
191 |
-
label="Protein Sequence"
|
192 |
-
)
|
193 |
-
|
194 |
-
# PDB ID input
|
195 |
pdb_input = gr.Textbox(
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
)
|
200 |
|
201 |
# Predict button
|
@@ -210,24 +246,26 @@ with gr.Blocks() as demo:
|
|
210 |
# 3D Molecule visualization
|
211 |
molecule_output = Molecule3D(
|
212 |
label="Protein Structure",
|
213 |
-
reps=
|
214 |
)
|
215 |
|
216 |
# Prediction logic
|
217 |
predict_btn.click(
|
218 |
-
|
219 |
-
inputs=[
|
220 |
-
outputs=[predictions_output, molecule_output]
|
221 |
)
|
222 |
|
223 |
# Add some example inputs
|
224 |
gr.Markdown("## Examples")
|
225 |
gr.Examples(
|
226 |
examples=[
|
227 |
-
["
|
|
|
|
|
228 |
],
|
229 |
-
inputs=[
|
230 |
-
outputs=[predictions_output, molecule_output]
|
231 |
)
|
232 |
|
233 |
demo.launch()
|
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.nn.functional as F
|
|
|
7 |
from torch.utils.data import DataLoader
|
8 |
|
9 |
import re
|
|
|
13 |
import copy
|
14 |
|
15 |
import transformers, datasets
|
|
|
|
|
|
|
|
|
|
|
16 |
from transformers import AutoTokenizer
|
|
|
17 |
from transformers import DataCollatorForTokenClassification
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from datasets import Dataset
|
20 |
|
21 |
from scipy.special import expit
|
22 |
|
23 |
import requests
|
24 |
|
25 |
+
# Biopython imports
|
26 |
+
from Bio.PDB import PDBParser, Select
|
27 |
+
from Bio.PDB.DSSP import DSSP
|
28 |
|
29 |
+
from gradio_molecule3d import Molecule3D
|
|
|
30 |
|
31 |
# Configuration
|
32 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
33 |
max_length = 1500
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Load model and move to device
|
36 |
model, tokenizer = load_model(checkpoint, max_length)
|
37 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
113 |
normalized_scores = normalize_scores(logits)
|
114 |
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
115 |
|
116 |
+
return test_one_letter_sequence, normalized_scores
|
|
|
|
|
117 |
|
118 |
def fetch_pdb(pdb_id):
|
119 |
try:
|
|
|
138 |
print(f"Error fetching PDB: {e}")
|
139 |
return None
|
140 |
|
141 |
+
def extract_protein_sequence(pdb_path):
|
142 |
+
"""
|
143 |
+
Extract the longest protein sequence from a PDB file
|
144 |
+
"""
|
145 |
+
parser = PDBParser(QUIET=1)
|
146 |
+
structure = parser.get_structure('protein', pdb_path)
|
147 |
+
|
148 |
+
class ProteinSelect(Select):
|
149 |
+
def accept_residue(self, residue):
|
150 |
+
# Only accept standard amino acids
|
151 |
+
standard_aa = set('ACDEFGHIKLMNPQRSTVWY')
|
152 |
+
return residue.get_resname() in standard_aa
|
153 |
+
|
154 |
+
# Find the longest protein chain
|
155 |
+
longest_sequence = ""
|
156 |
+
longest_chain = None
|
157 |
+
for model in structure:
|
158 |
+
for chain in model:
|
159 |
+
sequence = ""
|
160 |
+
for residue in chain:
|
161 |
+
if Select().accept_residue(residue):
|
162 |
+
sequence += residue.get_resname()
|
163 |
+
|
164 |
+
# Convert 3-letter amino acid codes to 1-letter
|
165 |
+
aa_dict = {
|
166 |
+
'ALA':'A', 'CYS':'C', 'ASP':'D', 'GLU':'E', 'PHE':'F',
|
167 |
+
'GLY':'G', 'HIS':'H', 'ILE':'I', 'LYS':'K', 'LEU':'L',
|
168 |
+
'MET':'M', 'ASN':'N', 'PRO':'P', 'GLN':'Q', 'ARG':'R',
|
169 |
+
'SER':'S', 'THR':'T', 'VAL':'V', 'TRP':'W', 'TYR':'Y'
|
170 |
+
}
|
171 |
+
|
172 |
+
one_letter_sequence = ''.join([aa_dict.get(res, 'X') for res in sequence])
|
173 |
+
|
174 |
+
# Track the longest sequence
|
175 |
+
if len(one_letter_sequence) > len(longest_sequence) and \
|
176 |
+
10 < len(one_letter_sequence) < 1500:
|
177 |
+
longest_sequence = one_letter_sequence
|
178 |
+
longest_chain = chain
|
179 |
|
180 |
+
return longest_sequence, longest_chain
|
181 |
+
|
182 |
+
def process_pdb(pdb_id):
|
183 |
# Fetch PDB file
|
184 |
pdb_path = fetch_pdb(pdb_id)
|
185 |
|
186 |
+
if not pdb_path:
|
187 |
+
return "Failed to fetch PDB file", None, None
|
188 |
+
|
189 |
+
# Extract protein sequence and chain
|
190 |
+
protein_sequence, chain = extract_protein_sequence(pdb_path)
|
191 |
+
|
192 |
+
if not protein_sequence:
|
193 |
+
return "No suitable protein sequence found", None, None
|
194 |
+
|
195 |
+
# Predict binding sites
|
196 |
+
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
197 |
+
|
198 |
+
# Prepare representations for coloring residues
|
199 |
+
reps = []
|
200 |
+
for i, (res, score) in enumerate(zip(sequence, normalized_scores), start=1):
|
201 |
+
# Map score to a color gradient from blue (low) to red (high)
|
202 |
+
color_intensity = int(score * 255)
|
203 |
+
color = f'rgb({color_intensity}, 0, {255-color_intensity})'
|
204 |
+
|
205 |
+
rep = {
|
206 |
+
"model": 0,
|
207 |
+
"chain": chain.id,
|
208 |
+
"resname": res,
|
209 |
+
"resnum": i,
|
210 |
+
"style": "cartoon",
|
211 |
+
"color": color,
|
212 |
+
"residue_range": f"{i}-{i}",
|
213 |
+
"around": 0,
|
214 |
+
"byres": True,
|
215 |
+
"visible": True
|
216 |
+
}
|
217 |
+
reps.append(rep)
|
218 |
+
|
219 |
+
# Prepare result string
|
220 |
+
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
221 |
+
|
222 |
+
return result_str, reps, pdb_path
|
223 |
|
224 |
# Create Gradio interface
|
225 |
with gr.Blocks() as demo:
|
|
|
227 |
|
228 |
with gr.Row():
|
229 |
with gr.Column():
|
230 |
+
# PDB ID input with default suggestion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
pdb_input = gr.Textbox(
|
232 |
+
value="2IWI",
|
233 |
+
label="PDB ID",
|
234 |
+
placeholder="Enter PDB ID here..."
|
235 |
)
|
236 |
|
237 |
# Predict button
|
|
|
246 |
# 3D Molecule visualization
|
247 |
molecule_output = Molecule3D(
|
248 |
label="Protein Structure",
|
249 |
+
reps=[] # Start with empty representations
|
250 |
)
|
251 |
|
252 |
# Prediction logic
|
253 |
predict_btn.click(
|
254 |
+
process_pdb,
|
255 |
+
inputs=[pdb_input],
|
256 |
+
outputs=[predictions_output, molecule_output, molecule_output]
|
257 |
)
|
258 |
|
259 |
# Add some example inputs
|
260 |
gr.Markdown("## Examples")
|
261 |
gr.Examples(
|
262 |
examples=[
|
263 |
+
["2IWI"],
|
264 |
+
["1ABC"],
|
265 |
+
["4HHB"]
|
266 |
],
|
267 |
+
inputs=[pdb_input],
|
268 |
+
outputs=[predictions_output, molecule_output, molecule_output]
|
269 |
)
|
270 |
|
271 |
demo.launch()
|
.ipynb_checkpoints/requirements-checkpoint.txt
CHANGED
@@ -9,4 +9,5 @@ scikit-learn>=0.24.0
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
-
gradio_molecule3d
|
|
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
+
gradio_molecule3d
|
13 |
+
biopython>=1.81
|
app.py
CHANGED
@@ -4,7 +4,6 @@ from model_loader import load_model
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.nn.functional as F
|
7 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
8 |
from torch.utils.data import DataLoader
|
9 |
|
10 |
import re
|
@@ -14,53 +13,25 @@ import pandas as pd
|
|
14 |
import copy
|
15 |
|
16 |
import transformers, datasets
|
17 |
-
from transformers.modeling_outputs import TokenClassifierOutput
|
18 |
-
from transformers.models.t5.modeling_t5 import T5Config, T5PreTrainedModel, T5Stack
|
19 |
-
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
20 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
21 |
-
from transformers.models.esm.modeling_esm import EsmPreTrainedModel, EsmModel
|
22 |
from transformers import AutoTokenizer
|
23 |
-
from transformers import TrainingArguments, Trainer, set_seed
|
24 |
from transformers import DataCollatorForTokenClassification
|
25 |
|
26 |
-
from dataclasses import dataclass
|
27 |
-
from typing import Dict, List, Optional, Tuple, Union
|
28 |
-
|
29 |
-
# for custom DataCollator
|
30 |
-
from transformers.data.data_collator import DataCollatorMixin
|
31 |
-
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
32 |
-
from transformers.utils import PaddingStrategy
|
33 |
-
|
34 |
from datasets import Dataset
|
35 |
|
36 |
from scipy.special import expit
|
37 |
|
38 |
import requests
|
39 |
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
#from peft import get_peft_config, PeftModel, PeftConfig, inject_adapter_in_model, LoraConfig
|
44 |
|
45 |
# Configuration
|
46 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
47 |
max_length = 1500
|
48 |
|
49 |
-
# Default representations for molecule rendering
|
50 |
-
reps = [
|
51 |
-
{
|
52 |
-
"model": 0,
|
53 |
-
"chain": "",
|
54 |
-
"resname": "",
|
55 |
-
"style": "cartoon",
|
56 |
-
"color": "spectrum",
|
57 |
-
"residue_range": "",
|
58 |
-
"around": 0,
|
59 |
-
"byres": False,
|
60 |
-
"visible": True
|
61 |
-
}
|
62 |
-
]
|
63 |
-
|
64 |
# Load model and move to device
|
65 |
model, tokenizer = load_model(checkpoint, max_length)
|
66 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
@@ -142,9 +113,7 @@ def predict_protein_sequence(test_one_letter_sequence):
|
|
142 |
normalized_scores = normalize_scores(logits)
|
143 |
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
return result_str
|
148 |
|
149 |
def fetch_pdb(pdb_id):
|
150 |
try:
|
@@ -169,14 +138,88 @@ def fetch_pdb(pdb_id):
|
|
169 |
print(f"Error fetching PDB: {e}")
|
170 |
return None
|
171 |
|
172 |
-
def
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
|
|
|
|
|
|
176 |
# Fetch PDB file
|
177 |
pdb_path = fetch_pdb(pdb_id)
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
# Create Gradio interface
|
182 |
with gr.Blocks() as demo:
|
@@ -184,18 +227,11 @@ with gr.Blocks() as demo:
|
|
184 |
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
-
#
|
188 |
-
sequence_input = gr.Textbox(
|
189 |
-
lines=2,
|
190 |
-
placeholder="Enter protein sequence here...",
|
191 |
-
label="Protein Sequence"
|
192 |
-
)
|
193 |
-
|
194 |
-
# PDB ID input
|
195 |
pdb_input = gr.Textbox(
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
)
|
200 |
|
201 |
# Predict button
|
@@ -210,24 +246,26 @@ with gr.Blocks() as demo:
|
|
210 |
# 3D Molecule visualization
|
211 |
molecule_output = Molecule3D(
|
212 |
label="Protein Structure",
|
213 |
-
reps=
|
214 |
)
|
215 |
|
216 |
# Prediction logic
|
217 |
predict_btn.click(
|
218 |
-
|
219 |
-
inputs=[
|
220 |
-
outputs=[predictions_output, molecule_output]
|
221 |
)
|
222 |
|
223 |
# Add some example inputs
|
224 |
gr.Markdown("## Examples")
|
225 |
gr.Examples(
|
226 |
examples=[
|
227 |
-
["
|
|
|
|
|
228 |
],
|
229 |
-
inputs=[
|
230 |
-
outputs=[predictions_output, molecule_output]
|
231 |
)
|
232 |
|
233 |
demo.launch()
|
|
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
import torch.nn.functional as F
|
|
|
7 |
from torch.utils.data import DataLoader
|
8 |
|
9 |
import re
|
|
|
13 |
import copy
|
14 |
|
15 |
import transformers, datasets
|
|
|
|
|
|
|
|
|
|
|
16 |
from transformers import AutoTokenizer
|
|
|
17 |
from transformers import DataCollatorForTokenClassification
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
from datasets import Dataset
|
20 |
|
21 |
from scipy.special import expit
|
22 |
|
23 |
import requests
|
24 |
|
25 |
+
# Biopython imports
|
26 |
+
from Bio.PDB import PDBParser, Select
|
27 |
+
from Bio.PDB.DSSP import DSSP
|
28 |
|
29 |
+
from gradio_molecule3d import Molecule3D
|
|
|
30 |
|
31 |
# Configuration
|
32 |
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
|
33 |
max_length = 1500
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Load model and move to device
|
36 |
model, tokenizer = load_model(checkpoint, max_length)
|
37 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
113 |
normalized_scores = normalize_scores(logits)
|
114 |
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
|
115 |
|
116 |
+
return test_one_letter_sequence, normalized_scores
|
|
|
|
|
117 |
|
118 |
def fetch_pdb(pdb_id):
|
119 |
try:
|
|
|
138 |
print(f"Error fetching PDB: {e}")
|
139 |
return None
|
140 |
|
141 |
+
def extract_protein_sequence(pdb_path):
|
142 |
+
"""
|
143 |
+
Extract the longest protein sequence from a PDB file
|
144 |
+
"""
|
145 |
+
parser = PDBParser(QUIET=1)
|
146 |
+
structure = parser.get_structure('protein', pdb_path)
|
147 |
+
|
148 |
+
class ProteinSelect(Select):
|
149 |
+
def accept_residue(self, residue):
|
150 |
+
# Only accept standard amino acids
|
151 |
+
standard_aa = set('ACDEFGHIKLMNPQRSTVWY')
|
152 |
+
return residue.get_resname() in standard_aa
|
153 |
+
|
154 |
+
# Find the longest protein chain
|
155 |
+
longest_sequence = ""
|
156 |
+
longest_chain = None
|
157 |
+
for model in structure:
|
158 |
+
for chain in model:
|
159 |
+
sequence = ""
|
160 |
+
for residue in chain:
|
161 |
+
if Select().accept_residue(residue):
|
162 |
+
sequence += residue.get_resname()
|
163 |
+
|
164 |
+
# Convert 3-letter amino acid codes to 1-letter
|
165 |
+
aa_dict = {
|
166 |
+
'ALA':'A', 'CYS':'C', 'ASP':'D', 'GLU':'E', 'PHE':'F',
|
167 |
+
'GLY':'G', 'HIS':'H', 'ILE':'I', 'LYS':'K', 'LEU':'L',
|
168 |
+
'MET':'M', 'ASN':'N', 'PRO':'P', 'GLN':'Q', 'ARG':'R',
|
169 |
+
'SER':'S', 'THR':'T', 'VAL':'V', 'TRP':'W', 'TYR':'Y'
|
170 |
+
}
|
171 |
+
|
172 |
+
one_letter_sequence = ''.join([aa_dict.get(res, 'X') for res in sequence])
|
173 |
+
|
174 |
+
# Track the longest sequence
|
175 |
+
if len(one_letter_sequence) > len(longest_sequence) and \
|
176 |
+
10 < len(one_letter_sequence) < 1500:
|
177 |
+
longest_sequence = one_letter_sequence
|
178 |
+
longest_chain = chain
|
179 |
|
180 |
+
return longest_sequence, longest_chain
|
181 |
+
|
182 |
+
def process_pdb(pdb_id):
|
183 |
# Fetch PDB file
|
184 |
pdb_path = fetch_pdb(pdb_id)
|
185 |
|
186 |
+
if not pdb_path:
|
187 |
+
return "Failed to fetch PDB file", None, None
|
188 |
+
|
189 |
+
# Extract protein sequence and chain
|
190 |
+
protein_sequence, chain = extract_protein_sequence(pdb_path)
|
191 |
+
|
192 |
+
if not protein_sequence:
|
193 |
+
return "No suitable protein sequence found", None, None
|
194 |
+
|
195 |
+
# Predict binding sites
|
196 |
+
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
|
197 |
+
|
198 |
+
# Prepare representations for coloring residues
|
199 |
+
reps = []
|
200 |
+
for i, (res, score) in enumerate(zip(sequence, normalized_scores), start=1):
|
201 |
+
# Map score to a color gradient from blue (low) to red (high)
|
202 |
+
color_intensity = int(score * 255)
|
203 |
+
color = f'rgb({color_intensity}, 0, {255-color_intensity})'
|
204 |
+
|
205 |
+
rep = {
|
206 |
+
"model": 0,
|
207 |
+
"chain": chain.id,
|
208 |
+
"resname": res,
|
209 |
+
"resnum": i,
|
210 |
+
"style": "cartoon",
|
211 |
+
"color": color,
|
212 |
+
"residue_range": f"{i}-{i}",
|
213 |
+
"around": 0,
|
214 |
+
"byres": True,
|
215 |
+
"visible": True
|
216 |
+
}
|
217 |
+
reps.append(rep)
|
218 |
+
|
219 |
+
# Prepare result string
|
220 |
+
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
|
221 |
+
|
222 |
+
return result_str, reps, pdb_path
|
223 |
|
224 |
# Create Gradio interface
|
225 |
with gr.Blocks() as demo:
|
|
|
227 |
|
228 |
with gr.Row():
|
229 |
with gr.Column():
|
230 |
+
# PDB ID input with default suggestion
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
pdb_input = gr.Textbox(
|
232 |
+
value="2IWI",
|
233 |
+
label="PDB ID",
|
234 |
+
placeholder="Enter PDB ID here..."
|
235 |
)
|
236 |
|
237 |
# Predict button
|
|
|
246 |
# 3D Molecule visualization
|
247 |
molecule_output = Molecule3D(
|
248 |
label="Protein Structure",
|
249 |
+
reps=[] # Start with empty representations
|
250 |
)
|
251 |
|
252 |
# Prediction logic
|
253 |
predict_btn.click(
|
254 |
+
process_pdb,
|
255 |
+
inputs=[pdb_input],
|
256 |
+
outputs=[predictions_output, molecule_output, molecule_output]
|
257 |
)
|
258 |
|
259 |
# Add some example inputs
|
260 |
gr.Markdown("## Examples")
|
261 |
gr.Examples(
|
262 |
examples=[
|
263 |
+
["2IWI"],
|
264 |
+
["1ABC"],
|
265 |
+
["4HHB"]
|
266 |
],
|
267 |
+
inputs=[pdb_input],
|
268 |
+
outputs=[predictions_output, molecule_output, molecule_output]
|
269 |
)
|
270 |
|
271 |
demo.launch()
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ scikit-learn>=0.24.0
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
-
gradio_molecule3d
|
|
|
|
9 |
sentencepiece
|
10 |
huggingface_hub>=0.15.0
|
11 |
requests
|
12 |
+
gradio_molecule3d
|
13 |
+
biopython>=1.81
|