test_webpage / app.py
ThorbenFroehlking
Update
fd6cc24
raw
history blame
9.3 kB
import gradio as gr
import requests
from Bio.PDB import PDBParser
import numpy as np
import os
from gradio_molecule3d import Molecule3D
from model_loader import load_model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import re
import pandas as pd
import copy
import transformers, datasets
from transformers import AutoTokenizer
from transformers import DataCollatorForTokenClassification
from datasets import Dataset
from scipy.special import expit
# Load model and move to device
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
max_length = 1500
model, tokenizer = load_model(checkpoint, max_length)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
def read_mol(pdb_path):
"""Read PDB file and return its content as a string"""
with open(pdb_path, 'r') as f:
return f.read()
def fetch_pdb(pdb_id):
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
pdb_path = f'{pdb_id}.pdb'
response = requests.get(pdb_url)
if response.status_code == 200:
with open(pdb_path, 'wb') as f:
f.write(response.content)
return pdb_path
else:
return None
def process_pdb(pdb_id, segment):
pdb_path = fetch_pdb(pdb_id)
if not pdb_path:
return "Failed to fetch PDB file", None, None
parser = PDBParser(QUIET=1)
structure = parser.get_structure('protein', pdb_path)
try:
chain = structure[0][segment]
except KeyError:
return "Invalid Chain ID", None, None
aa_dict = {
'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',
'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',
'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',
'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',
'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'
}
# Exclude non-amino acid residues
sequence = "".join(
aa_dict[residue.get_resname().strip()]
for residue in chain
if residue.get_resname().strip() in aa_dict
)
sequence2 = [
(res.id[1], res) for res in chain
if res.get_resname().strip() in aa_dict
]
# Prepare input for model prediction
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
with torch.no_grad():
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
# Calculate scores and normalize them
scores = expit(outputs[:, 1] - outputs[:, 0])
normalized_scores = normalize_scores(scores)
# Zip residues with scores to track the residue ID and score
residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]
result_str = "\n".join([
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict
])
# Save the predictions to a file
prediction_file = f"{pdb_id}_predictions.txt"
with open(prediction_file, "w") as f:
f.write(result_str)
return result_str, molecule(pdb_path, residue_scores, segment), prediction_file
def molecule(input_pdb, residue_scores=None, segment='A'):
mol = read_mol(input_pdb) # Read PDB file content
# Prepare high-scoring residues script if scores are provided
high_score_script = ""
if residue_scores is not None:
# Sort residues based on their scores
high_score_residues = [resi for resi, score in residue_scores if score > 0.75]
mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]
high_score_script = """
// Reset all styles first
viewer.getModel(0).setStyle({}, {});
// Show only the selected chain
viewer.getModel(0).setStyle(
{"chain": "%s"},
{ cartoon: {colorscheme:"whiteCarbon"} }
);
// Highlight high-scoring residues only for the selected chain
let highScoreResidues = [%s];
viewer.getModel(0).setStyle(
{"chain": "%s", "resi": highScoreResidues},
{"stick": {"color": "red"}}
);
// Highlight medium-scoring residues only for the selected chain
let midScoreResidues = [%s];
viewer.getModel(0).setStyle(
{"chain": "%s", "resi": midScoreResidues},
{"stick": {"color": "orange"}}
);
""" % (segment,
", ".join(str(resi) for resi in high_score_residues),
segment,
", ".join(str(resi) for resi in mid_score_residues),
segment)
html_content = f"""
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<style>
.mol-container {{
width: 100%;
height: 700px;
position: relative;
}}
</style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js"></script>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<script>
let pdb = `{mol}`; // Use template literal to properly escape PDB content
$(document).ready(function () {{
let element = $("#container");
let config = {{ backgroundColor: "white" }};
let viewer = $3Dmol.createViewer(element, config);
viewer.addModel(pdb, "pdb");
// Reset all styles and show only selected chain
viewer.getModel(0).setStyle(
{{"chain": "{segment}"}},
{{ cartoon: {{ colorscheme:"whiteCarbon" }} }}
);
{high_score_script}
// Add hover functionality
viewer.setHoverable(
{{}},
true,
function(atom, viewer, event, container) {{
if (!atom.label) {{
atom.label = viewer.addLabel(
atom.resn + ":" +atom.resi + ":" + atom.atom,
{{
position: atom,
backgroundColor: 'mintcream',
fontColor: 'black',
fontSize: 12,
padding: 2
}}
);
}}
}},
function(atom, viewer) {{
if (atom.label) {{
viewer.removeLabel(atom.label);
delete atom.label;
}}
}}
);
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
}});
</script>
</body>
</html>
"""
# Return the HTML content within an iframe safely encoded for special characters
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), "&quot;").replace(chr(39), "&#39;")}"></iframe>'
reps = [
{
"model": 0,
"style": "cartoon",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False,
}
]
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Protein Binding Site Prediction (Random Scores)")
with gr.Row():
pdb_input = gr.Textbox(value="2IWI", label="PDB ID", placeholder="Enter PDB ID here...")
visualize_btn = gr.Button("Visualize Structure")
molecule_output2 = Molecule3D(label="Protein Structure", reps=reps)
with gr.Row():
pdb_input = gr.Textbox(value="2IWI", label="PDB ID", placeholder="Enter PDB ID here...")
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
prediction_btn = gr.Button("Predict Random Binding Site Scores")
molecule_output = gr.HTML(label="Protein Structure")
predictions_output = gr.Textbox(label="Binding Site Predictions")
download_output = gr.File(label="Download Predictions")
visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)
prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])
gr.Markdown("## Examples")
gr.Examples(
examples=[
["7RPZ", "A"],
["2IWI", "B"],
["3TJN", "C"]
],
inputs=[pdb_input, segment_input],
outputs=[predictions_output, molecule_output, download_output]
)
demo.launch(share=True)