Spaces:
Sleeping
Sleeping
ThorbenFroehlking
commited on
Commit
·
09b66ec
1
Parent(s):
e834a48
Update
Browse files- .DS_Store +0 -0
- .ipynb_checkpoints/2IWI-checkpoint.pdb +0 -0
- .ipynb_checkpoints/app-checkpoint.py +218 -84
- .ipynb_checkpoints/test3-checkpoint.ipynb +6 -6
- test3.ipynb → .ipynb_checkpoints/test4-checkpoint.ipynb +0 -0
- 2IWI.cif +0 -0
- 2IWI.pdb +0 -0
- 2IWI_predictions.txt +0 -249
- 4BDU.cif +0 -0
- 4BDU.pdb +0 -0
- 4BDU_A_scored.pdb +0 -0
- 4BDU_C_scored.pdb +0 -0
- 4BDU_predictions.txt +0 -300
- __pycache__/model_loader.cpython-312.pyc +0 -0
- app.py +218 -84
- test.ipynb +0 -846
- test2.ipynb +0 -1598
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.ipynb_checkpoints/2IWI-checkpoint.pdb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -29,6 +29,22 @@ from datasets import Dataset
|
|
29 |
|
30 |
from scipy.special import expit
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
# Load model and move to device
|
@@ -39,6 +55,24 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
39 |
model.to(device)
|
40 |
model.eval()
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def normalize_scores(scores):
|
43 |
min_score = np.min(scores)
|
44 |
max_score = np.max(scores)
|
@@ -101,36 +135,44 @@ def fetch_pdb(pdb_id):
|
|
101 |
pdb_path = convert_cif_to_pdb(pdb_path)
|
102 |
return pdb_path
|
103 |
|
104 |
-
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:
|
105 |
"""
|
106 |
-
Create a PDB file with only the
|
107 |
"""
|
108 |
# Read the original PDB file
|
109 |
parser = PDBParser(QUIET=True)
|
110 |
structure = parser.get_structure('protein', input_pdb)
|
111 |
|
112 |
-
# Prepare a new structure with only the specified chain
|
113 |
-
|
114 |
-
for model in new_structure:
|
115 |
-
# Remove all chains except the specified one
|
116 |
-
chains_to_remove = [chain for chain in model if chain.id != chain_id]
|
117 |
-
for chain in chains_to_remove:
|
118 |
-
model.detach_child(chain.id)
|
119 |
|
120 |
-
# Create
|
121 |
scores_dict = {resi: score for resi, score in residue_scores}
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
io = PDBIO()
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
|
135 |
return output_pdb
|
136 |
|
@@ -158,8 +200,6 @@ def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_i
|
|
158 |
return center
|
159 |
return None
|
160 |
|
161 |
-
|
162 |
-
|
163 |
def process_pdb(pdb_id_or_file, segment):
|
164 |
# Determine if input is a PDB ID or file path
|
165 |
if pdb_id_or_file.endswith('.pdb'):
|
@@ -192,67 +232,75 @@ def process_pdb(pdb_id_or_file, segment):
|
|
192 |
sequence = "".join(seq1(res.resname) for res in protein_residues)
|
193 |
sequence_id = [res.id[1] for res in protein_residues]
|
194 |
|
195 |
-
|
196 |
-
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
197 |
-
with torch.no_grad():
|
198 |
-
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
199 |
-
|
200 |
-
# Calculate scores and normalize them
|
201 |
-
scores = expit(outputs[:, 1] - outputs[:, 0])
|
202 |
normalized_scores = normalize_scores(scores)
|
203 |
|
204 |
# Zip residues with scores to track the residue ID and score
|
205 |
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
#
|
212 |
-
geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)
|
213 |
-
pymol_selection = f"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}"
|
214 |
-
pymol_center_cmd = f"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}" if geo_center is not None else ""
|
215 |
-
|
216 |
-
# Generate the result string
|
217 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
218 |
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
|
|
219 |
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
|
220 |
result_str += "\n".join([
|
221 |
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
222 |
-
for i, res in enumerate(protein_residues)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
# Create prediction and scored PDB files
|
225 |
-
prediction_file = f"{pdb_id}
|
226 |
with open(prediction_file, "w") as f:
|
227 |
f.write(result_str)
|
228 |
-
|
229 |
-
# Create chain-specific PDB with scores in B-factor
|
230 |
-
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)
|
231 |
-
|
232 |
-
# Molecule visualization with updated script
|
233 |
-
mol_vis = molecule(pdb_path, residue_scores, segment)
|
234 |
-
|
235 |
-
# Construct PyMOL command suggestions
|
236 |
-
pymol_commands = f"""
|
237 |
-
PyMOL Visualization Commands:
|
238 |
-
1. Load PDB: load {os.path.abspath(pdb_path)}
|
239 |
-
2. Select high-scoring residues: {pymol_selection}
|
240 |
-
3. Highlight high-scoring residues: show sticks, high_score_residues
|
241 |
-
{pymol_center_cmd}
|
242 |
-
"""
|
243 |
|
244 |
-
return
|
245 |
-
|
246 |
|
247 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
|
248 |
mol = read_mol(input_pdb) # Read PDB file content
|
249 |
|
250 |
# Prepare high-scoring residues script if scores are provided
|
251 |
high_score_script = ""
|
252 |
if residue_scores is not None:
|
253 |
# Filter residues based on their scores
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
256 |
|
257 |
high_score_script = """
|
258 |
// Load the original model and apply white cartoon style
|
@@ -264,26 +312,57 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
264 |
);
|
265 |
|
266 |
// Create a new model for high-scoring residues and apply red sticks style
|
267 |
-
let
|
268 |
-
|
269 |
-
|
270 |
{"chain": "%s", "resi": [%s]},
|
271 |
-
{"stick": {"color": "
|
272 |
);
|
273 |
|
274 |
-
// Create a new model for
|
275 |
-
let
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
{"chain": "%s", "resi": [%s]},
|
279 |
{"stick": {"color": "orange"}}
|
280 |
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
""" % (
|
282 |
segment,
|
283 |
segment,
|
284 |
-
", ".join(str(resi) for resi in
|
285 |
segment,
|
286 |
-
", ".join(str(resi) for resi in
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
)
|
288 |
|
289 |
# Generate the full HTML content
|
@@ -351,14 +430,22 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
351 |
# Return the HTML content within an iframe safely encoded for special characters
|
352 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
353 |
|
354 |
-
|
355 |
# Gradio UI
|
356 |
with gr.Blocks() as demo:
|
357 |
gr.Markdown("# Protein Binding Site Prediction")
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
|
364 |
{
|
@@ -375,23 +462,70 @@ with gr.Blocks() as demo:
|
|
375 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
376 |
prediction_btn = gr.Button("Predict Binding Site")
|
377 |
|
378 |
-
|
379 |
molecule_output = gr.HTML(label="Protein Structure")
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
download_output = gr.File(label="Download Files", file_count="multiple")
|
382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
prediction_btn.click(
|
384 |
-
|
385 |
-
inputs=[
|
386 |
-
pdb_input,
|
387 |
-
segment_input
|
388 |
-
],
|
389 |
outputs=[predictions_output, molecule_output, download_output]
|
390 |
)
|
391 |
|
392 |
visualize_btn.click(
|
393 |
-
|
394 |
-
inputs=[pdb_input],
|
395 |
outputs=molecule_output2
|
396 |
)
|
397 |
|
|
|
29 |
|
30 |
from scipy.special import expit
|
31 |
|
32 |
+
from datetime import datetime
|
33 |
+
import gradio as gr
|
34 |
+
import requests
|
35 |
+
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
|
36 |
+
from Bio.PDB.Polypeptide import is_aa
|
37 |
+
from Bio.SeqUtils import seq1
|
38 |
+
from typing import Optional, Tuple
|
39 |
+
import numpy as np
|
40 |
+
import os
|
41 |
+
from gradio_molecule3d import Molecule3D
|
42 |
+
|
43 |
+
import re
|
44 |
+
import pandas as pd
|
45 |
+
import copy
|
46 |
+
|
47 |
+
from scipy.special import expit
|
48 |
|
49 |
|
50 |
# Load model and move to device
|
|
|
55 |
model.to(device)
|
56 |
model.eval()
|
57 |
|
58 |
+
from datetime import datetime
|
59 |
+
import gradio as gr
|
60 |
+
import requests
|
61 |
+
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
|
62 |
+
from Bio.PDB.Polypeptide import is_aa
|
63 |
+
from Bio.SeqUtils import seq1
|
64 |
+
from Bio.PDB import Select
|
65 |
+
from typing import Optional, Tuple
|
66 |
+
import numpy as np
|
67 |
+
import os
|
68 |
+
from gradio_molecule3d import Molecule3D
|
69 |
+
|
70 |
+
import re
|
71 |
+
import pandas as pd
|
72 |
+
import copy
|
73 |
+
|
74 |
+
from scipy.special import expit
|
75 |
+
|
76 |
def normalize_scores(scores):
|
77 |
min_score = np.min(scores)
|
78 |
max_score = np.max(scores)
|
|
|
135 |
pdb_path = convert_cif_to_pdb(pdb_path)
|
136 |
return pdb_path
|
137 |
|
138 |
+
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:
|
139 |
"""
|
140 |
+
Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores
|
141 |
"""
|
142 |
# Read the original PDB file
|
143 |
parser = PDBParser(QUIET=True)
|
144 |
structure = parser.get_structure('protein', input_pdb)
|
145 |
|
146 |
+
# Prepare a new structure with only the specified chain and selected residues
|
147 |
+
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb"
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
# Create scores dictionary for easy lookup
|
150 |
scores_dict = {resi: score for resi, score in residue_scores}
|
151 |
+
|
152 |
+
# Create a custom Select class
|
153 |
+
class ResidueSelector(Select):
|
154 |
+
def __init__(self, chain_id, selected_residues, scores_dict):
|
155 |
+
self.chain_id = chain_id
|
156 |
+
self.selected_residues = selected_residues
|
157 |
+
self.scores_dict = scores_dict
|
158 |
+
|
159 |
+
def accept_chain(self, chain):
|
160 |
+
return chain.id == self.chain_id
|
161 |
+
|
162 |
+
def accept_residue(self, residue):
|
163 |
+
return residue.id[1] in self.selected_residues
|
164 |
+
|
165 |
+
def accept_atom(self, atom):
|
166 |
+
if atom.parent.id[1] in self.scores_dict:
|
167 |
+
atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100
|
168 |
+
return True
|
169 |
+
|
170 |
+
# Prepare output PDB with selected chain and residues, modified B-factors
|
171 |
io = PDBIO()
|
172 |
+
selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)
|
173 |
+
|
174 |
+
io.set_structure(structure[0])
|
175 |
+
io.save(output_pdb, selector)
|
176 |
|
177 |
return output_pdb
|
178 |
|
|
|
200 |
return center
|
201 |
return None
|
202 |
|
|
|
|
|
203 |
def process_pdb(pdb_id_or_file, segment):
|
204 |
# Determine if input is a PDB ID or file path
|
205 |
if pdb_id_or_file.endswith('.pdb'):
|
|
|
232 |
sequence = "".join(seq1(res.resname) for res in protein_residues)
|
233 |
sequence_id = [res.id[1] for res in protein_residues]
|
234 |
|
235 |
+
scores = np.random.rand(len(sequence))
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
normalized_scores = normalize_scores(scores)
|
237 |
|
238 |
# Zip residues with scores to track the residue ID and score
|
239 |
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
|
240 |
|
241 |
+
|
242 |
+
# Identify high scoring residues (> 0.5)
|
243 |
+
high_score_residues = [resi for resi, score in residue_scores if score > 0.5]
|
244 |
+
|
245 |
+
# Preparing the result: only print high scoring residues
|
|
|
|
|
|
|
|
|
|
|
246 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
247 |
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
248 |
+
result_str += "High-scoring Residues (Score > 0.5):\n"
|
249 |
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
|
250 |
result_str += "\n".join([
|
251 |
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
252 |
+
for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues
|
253 |
+
])
|
254 |
+
|
255 |
+
# Create chain-specific PDB with scores in B-factor
|
256 |
+
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)
|
257 |
+
|
258 |
+
# Molecule visualization with updated script with color mapping
|
259 |
+
mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)
|
260 |
+
|
261 |
+
# Improved PyMOL command suggestions
|
262 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
263 |
+
pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
264 |
+
|
265 |
+
pymol_commands += f"""
|
266 |
+
# PyMOL Visualization Commands
|
267 |
+
load {os.path.abspath(pdb_path)}, protein
|
268 |
+
hide everything, all
|
269 |
+
show cartoon, chain {segment}
|
270 |
+
color white, chain {segment}
|
271 |
+
"""
|
272 |
|
273 |
+
# Color specific residues
|
274 |
+
for score_range, color in [
|
275 |
+
(high_score_residues, "red")
|
276 |
+
]:
|
277 |
+
if score_range:
|
278 |
+
resi_list = '+'.join(map(str, score_range))
|
279 |
+
pymol_commands += f"""
|
280 |
+
select high_score_residues, resi {resi_list} and chain {segment}
|
281 |
+
show sticks, high_score_residues
|
282 |
+
color {color}, high_score_residues
|
283 |
+
"""
|
284 |
# Create prediction and scored PDB files
|
285 |
+
prediction_file = f"{pdb_id}_binding_site_residues.txt"
|
286 |
with open(prediction_file, "w") as f:
|
287 |
f.write(result_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
return pymol_commands, mol_vis, [prediction_file,scored_pdb]
|
|
|
290 |
|
291 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
292 |
+
# More granular scoring for visualization
|
293 |
mol = read_mol(input_pdb) # Read PDB file content
|
294 |
|
295 |
# Prepare high-scoring residues script if scores are provided
|
296 |
high_score_script = ""
|
297 |
if residue_scores is not None:
|
298 |
# Filter residues based on their scores
|
299 |
+
class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]
|
300 |
+
class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]
|
301 |
+
class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]
|
302 |
+
class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]
|
303 |
+
class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]
|
304 |
|
305 |
high_score_script = """
|
306 |
// Load the original model and apply white cartoon style
|
|
|
312 |
);
|
313 |
|
314 |
// Create a new model for high-scoring residues and apply red sticks style
|
315 |
+
let class1Model = viewer.addModel(pdb, "pdb");
|
316 |
+
class1Model.setStyle({}, {});
|
317 |
+
class1Model.setStyle(
|
318 |
{"chain": "%s", "resi": [%s]},
|
319 |
+
{"stick": {"color": "blue"}}
|
320 |
);
|
321 |
|
322 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
323 |
+
let class2Model = viewer.addModel(pdb, "pdb");
|
324 |
+
class2Model.setStyle({}, {});
|
325 |
+
class2Model.setStyle(
|
326 |
+
{"chain": "%s", "resi": [%s]},
|
327 |
+
{"stick": {"color": "lightblue"}}
|
328 |
+
);
|
329 |
+
|
330 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
331 |
+
let class3Model = viewer.addModel(pdb, "pdb");
|
332 |
+
class3Model.setStyle({}, {});
|
333 |
+
class3Model.setStyle(
|
334 |
+
{"chain": "%s", "resi": [%s]},
|
335 |
+
{"stick": {"color": "white"}}
|
336 |
+
);
|
337 |
+
|
338 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
339 |
+
let class4Model = viewer.addModel(pdb, "pdb");
|
340 |
+
class4Model.setStyle({}, {});
|
341 |
+
class4Model.setStyle(
|
342 |
{"chain": "%s", "resi": [%s]},
|
343 |
{"stick": {"color": "orange"}}
|
344 |
);
|
345 |
+
|
346 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
347 |
+
let class5Model = viewer.addModel(pdb, "pdb");
|
348 |
+
class5Model.setStyle({}, {});
|
349 |
+
class5Model.setStyle(
|
350 |
+
{"chain": "%s", "resi": [%s]},
|
351 |
+
{"stick": {"color": "red"}}
|
352 |
+
);
|
353 |
+
|
354 |
""" % (
|
355 |
segment,
|
356 |
segment,
|
357 |
+
", ".join(str(resi) for resi in class1_score_residues),
|
358 |
segment,
|
359 |
+
", ".join(str(resi) for resi in class2_score_residues),
|
360 |
+
segment,
|
361 |
+
", ".join(str(resi) for resi in class3_score_residues),
|
362 |
+
segment,
|
363 |
+
", ".join(str(resi) for resi in class4_score_residues),
|
364 |
+
segment,
|
365 |
+
", ".join(str(resi) for resi in class5_score_residues)
|
366 |
)
|
367 |
|
368 |
# Generate the full HTML content
|
|
|
430 |
# Return the HTML content within an iframe safely encoded for special characters
|
431 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
432 |
|
|
|
433 |
# Gradio UI
|
434 |
with gr.Blocks() as demo:
|
435 |
gr.Markdown("# Protein Binding Site Prediction")
|
436 |
|
437 |
+
# Mode selection
|
438 |
+
mode = gr.Radio(
|
439 |
+
choices=["PDB ID", "Upload File"],
|
440 |
+
value="PDB ID",
|
441 |
+
label="Input Mode",
|
442 |
+
info="Choose whether to input a PDB ID or upload a PDB/CIF file."
|
443 |
+
)
|
444 |
+
|
445 |
+
# Input components based on mode
|
446 |
+
pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...")
|
447 |
+
pdb_file = gr.File(label="Upload PDB/CIF File", visible=False)
|
448 |
+
visualize_btn = gr.Button("Visualize Structure")
|
449 |
|
450 |
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
|
451 |
{
|
|
|
462 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
463 |
prediction_btn = gr.Button("Predict Binding Site")
|
464 |
|
|
|
465 |
molecule_output = gr.HTML(label="Protein Structure")
|
466 |
+
explanation_vis = gr.Markdown("""
|
467 |
+
Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding:
|
468 |
+
- 0.5-0.6: blue
|
469 |
+
- 0.6–0.7: light blue
|
470 |
+
- 0.7–0.8: white
|
471 |
+
- 0.8–0.9: orange
|
472 |
+
- 0.9–1.0: red
|
473 |
+
""")
|
474 |
+
predictions_output = gr.Textbox(label="Visualize Prediction with PyMol")
|
475 |
+
gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column")
|
476 |
download_output = gr.File(label="Download Files", file_count="multiple")
|
477 |
|
478 |
+
def process_interface(mode, pdb_id, pdb_file, chain_id):
|
479 |
+
if mode == "PDB ID":
|
480 |
+
return process_pdb(pdb_id, chain_id)
|
481 |
+
elif mode == "Upload File":
|
482 |
+
_, ext = os.path.splitext(pdb_file.name)
|
483 |
+
file_path = os.path.join('./', f"{_}{ext}")
|
484 |
+
if ext == '.cif':
|
485 |
+
pdb_path = convert_cif_to_pdb(file_path)
|
486 |
+
else:
|
487 |
+
pdb_path= file_path
|
488 |
+
return process_pdb(pdb_path, chain_id)
|
489 |
+
else:
|
490 |
+
return "Error: Invalid mode selected", None, None
|
491 |
+
|
492 |
+
def fetch_interface(mode, pdb_id, pdb_file):
|
493 |
+
if mode == "PDB ID":
|
494 |
+
return fetch_pdb(pdb_id)
|
495 |
+
elif mode == "Upload File":
|
496 |
+
_, ext = os.path.splitext(pdb_file.name)
|
497 |
+
file_path = os.path.join('./', f"{_}{ext}")
|
498 |
+
#print(ext)
|
499 |
+
if ext == '.cif':
|
500 |
+
pdb_path = convert_cif_to_pdb(file_path)
|
501 |
+
else:
|
502 |
+
pdb_path= file_path
|
503 |
+
#print(pdb_path)
|
504 |
+
return pdb_path
|
505 |
+
else:
|
506 |
+
return "Error: Invalid mode selected"
|
507 |
+
|
508 |
+
def toggle_mode(selected_mode):
|
509 |
+
if selected_mode == "PDB ID":
|
510 |
+
return gr.update(visible=True), gr.update(visible=False)
|
511 |
+
else:
|
512 |
+
return gr.update(visible=False), gr.update(visible=True)
|
513 |
+
|
514 |
+
mode.change(
|
515 |
+
toggle_mode,
|
516 |
+
inputs=[mode],
|
517 |
+
outputs=[pdb_input, pdb_file]
|
518 |
+
)
|
519 |
+
|
520 |
prediction_btn.click(
|
521 |
+
process_interface,
|
522 |
+
inputs=[mode, pdb_input, pdb_file, segment_input],
|
|
|
|
|
|
|
523 |
outputs=[predictions_output, molecule_output, download_output]
|
524 |
)
|
525 |
|
526 |
visualize_btn.click(
|
527 |
+
fetch_interface,
|
528 |
+
inputs=[mode, pdb_input, pdb_file],
|
529 |
outputs=molecule_output2
|
530 |
)
|
531 |
|
.ipynb_checkpoints/test3-checkpoint.ipynb
CHANGED
@@ -1149,7 +1149,7 @@
|
|
1149 |
},
|
1150 |
{
|
1151 |
"cell_type": "code",
|
1152 |
-
"execution_count":
|
1153 |
"id": "514fad12-a31a-495f-af9e-04a18e11175e",
|
1154 |
"metadata": {},
|
1155 |
"outputs": [
|
@@ -1157,8 +1157,8 @@
|
|
1157 |
"name": "stdout",
|
1158 |
"output_type": "stream",
|
1159 |
"text": [
|
1160 |
-
"* Running on local URL: http://127.0.0.1:
|
1161 |
-
"* Running on public URL: https://
|
1162 |
"\n",
|
1163 |
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
1164 |
]
|
@@ -1166,7 +1166,7 @@
|
|
1166 |
{
|
1167 |
"data": {
|
1168 |
"text/html": [
|
1169 |
-
"<div><iframe src=\"https://
|
1170 |
],
|
1171 |
"text/plain": [
|
1172 |
"<IPython.core.display.HTML object>"
|
@@ -1179,7 +1179,7 @@
|
|
1179 |
"data": {
|
1180 |
"text/plain": []
|
1181 |
},
|
1182 |
-
"execution_count":
|
1183 |
"metadata": {},
|
1184 |
"output_type": "execute_result"
|
1185 |
}
|
@@ -1422,7 +1422,7 @@
|
|
1422 |
"\n",
|
1423 |
" // Create a new model for medium-scoring residues and apply orange sticks style\n",
|
1424 |
" let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1425 |
-
"
|
1426 |
" midScoreModel.setStyle(\n",
|
1427 |
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1428 |
" {\"stick\": {\"color\": \"orange\"}}\n",
|
|
|
1149 |
},
|
1150 |
{
|
1151 |
"cell_type": "code",
|
1152 |
+
"execution_count": 39,
|
1153 |
"id": "514fad12-a31a-495f-af9e-04a18e11175e",
|
1154 |
"metadata": {},
|
1155 |
"outputs": [
|
|
|
1157 |
"name": "stdout",
|
1158 |
"output_type": "stream",
|
1159 |
"text": [
|
1160 |
+
"* Running on local URL: http://127.0.0.1:7897\n",
|
1161 |
+
"* Running on public URL: https://0d9b5d36fa5302e0df.gradio.live\n",
|
1162 |
"\n",
|
1163 |
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
1164 |
]
|
|
|
1166 |
{
|
1167 |
"data": {
|
1168 |
"text/html": [
|
1169 |
+
"<div><iframe src=\"https://0d9b5d36fa5302e0df.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
1170 |
],
|
1171 |
"text/plain": [
|
1172 |
"<IPython.core.display.HTML object>"
|
|
|
1179 |
"data": {
|
1180 |
"text/plain": []
|
1181 |
},
|
1182 |
+
"execution_count": 39,
|
1183 |
"metadata": {},
|
1184 |
"output_type": "execute_result"
|
1185 |
}
|
|
|
1422 |
"\n",
|
1423 |
" // Create a new model for medium-scoring residues and apply orange sticks style\n",
|
1424 |
" let midScoreModel = viewer.addModel(pdb, \"pdb\");\n",
|
1425 |
+
" highScormidScoreModeleModel.setStyle({}, {});\n",
|
1426 |
" midScoreModel.setStyle(\n",
|
1427 |
" {\"chain\": \"%s\", \"resi\": [%s]}, \n",
|
1428 |
" {\"stick\": {\"color\": \"orange\"}}\n",
|
test3.ipynb → .ipynb_checkpoints/test4-checkpoint.ipynb
RENAMED
The diff for this file is too large to render.
See raw diff
|
|
2IWI.cif
DELETED
The diff for this file is too large to render.
See raw diff
|
|
2IWI.pdb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
2IWI_predictions.txt
DELETED
@@ -1,249 +0,0 @@
|
|
1 |
-
GLY 22 G 0.18
|
2 |
-
LYS 23 K 0.51
|
3 |
-
ASP 24 D 0.12
|
4 |
-
ARG 25 R 0.25
|
5 |
-
GLU 26 E 0.08
|
6 |
-
ALA 27 A 0.82
|
7 |
-
PHE 28 F 0.65
|
8 |
-
GLU 29 E 0.65
|
9 |
-
ALA 30 A 0.22
|
10 |
-
GLU 31 E 0.49
|
11 |
-
TYR 32 Y 0.57
|
12 |
-
ARG 33 R 0.56
|
13 |
-
LEU 34 L 0.83
|
14 |
-
GLY 35 G 0.42
|
15 |
-
PRO 36 P 0.97
|
16 |
-
LEU 37 L 0.65
|
17 |
-
LEU 38 L 0.08
|
18 |
-
GLY 39 G 0.05
|
19 |
-
LYS 40 K 0.55
|
20 |
-
GLY 41 G 0.38
|
21 |
-
GLY 42 G 0.45
|
22 |
-
PHE 43 F 0.92
|
23 |
-
GLY 44 G 0.00
|
24 |
-
THR 45 T 0.76
|
25 |
-
VAL 46 V 0.63
|
26 |
-
PHE 47 F 0.97
|
27 |
-
ALA 48 A 0.57
|
28 |
-
GLY 49 G 0.94
|
29 |
-
HIS 50 H 0.40
|
30 |
-
ARG 51 R 0.27
|
31 |
-
LEU 52 L 0.65
|
32 |
-
THR 53 T 0.84
|
33 |
-
ASP 54 D 0.85
|
34 |
-
ARG 55 R 0.46
|
35 |
-
LEU 56 L 0.87
|
36 |
-
GLN 57 Q 0.76
|
37 |
-
VAL 58 V 0.22
|
38 |
-
ALA 59 A 0.65
|
39 |
-
ILE 60 I 0.87
|
40 |
-
LYS 61 K 0.69
|
41 |
-
VAL 62 V 0.76
|
42 |
-
ILE 63 I 0.70
|
43 |
-
PRO 64 P 0.04
|
44 |
-
ARG 65 R 0.20
|
45 |
-
THR 79 T 0.80
|
46 |
-
CYS 80 C 0.82
|
47 |
-
PRO 81 P 0.72
|
48 |
-
LEU 82 L 0.17
|
49 |
-
GLU 83 E 0.70
|
50 |
-
VAL 84 V 0.21
|
51 |
-
ALA 85 A 0.15
|
52 |
-
LEU 86 L 0.28
|
53 |
-
LEU 87 L 0.03
|
54 |
-
TRP 88 W 0.18
|
55 |
-
LYS 89 K 0.01
|
56 |
-
VAL 90 V 0.43
|
57 |
-
GLY 91 G 0.25
|
58 |
-
ALA 92 A 0.65
|
59 |
-
GLY 93 G 0.00
|
60 |
-
GLY 94 G 0.52
|
61 |
-
GLY 95 G 0.22
|
62 |
-
HIS 96 H 0.03
|
63 |
-
PRO 97 P 0.57
|
64 |
-
GLY 98 G 0.32
|
65 |
-
VAL 99 V 0.89
|
66 |
-
ILE 100 I 0.14
|
67 |
-
ARG 101 R 0.66
|
68 |
-
LEU 102 L 0.18
|
69 |
-
LEU 103 L 0.30
|
70 |
-
ASP 104 D 0.36
|
71 |
-
TRP 105 W 0.83
|
72 |
-
PHE 106 F 0.77
|
73 |
-
GLU 107 E 0.95
|
74 |
-
PHE 112 F 0.04
|
75 |
-
MET 113 M 0.05
|
76 |
-
LEU 114 L 0.32
|
77 |
-
VAL 115 V 1.00
|
78 |
-
LEU 116 L 0.43
|
79 |
-
GLU 117 E 0.76
|
80 |
-
ARG 118 R 0.65
|
81 |
-
PRO 119 P 0.28
|
82 |
-
LEU 120 L 0.74
|
83 |
-
PRO 121 P 0.69
|
84 |
-
ALA 122 A 0.89
|
85 |
-
GLN 123 Q 0.68
|
86 |
-
ASP 124 D 0.67
|
87 |
-
LEU 125 L 0.89
|
88 |
-
PHE 126 F 0.33
|
89 |
-
ASP 127 D 0.05
|
90 |
-
TYR 128 Y 0.59
|
91 |
-
ILE 129 I 0.19
|
92 |
-
THR 130 T 0.88
|
93 |
-
GLU 131 E 0.24
|
94 |
-
LYS 132 K 0.04
|
95 |
-
GLY 133 G 0.99
|
96 |
-
PRO 134 P 0.43
|
97 |
-
LEU 135 L 0.31
|
98 |
-
GLY 136 G 0.83
|
99 |
-
GLU 137 E 0.12
|
100 |
-
GLY 138 G 0.02
|
101 |
-
PRO 139 P 0.71
|
102 |
-
SER 140 S 0.70
|
103 |
-
ARG 141 R 0.63
|
104 |
-
CYS 142 C 0.70
|
105 |
-
PHE 143 F 0.92
|
106 |
-
PHE 144 F 0.02
|
107 |
-
GLY 145 G 0.72
|
108 |
-
GLN 146 Q 0.03
|
109 |
-
VAL 147 V 0.70
|
110 |
-
VAL 148 V 0.34
|
111 |
-
ALA 149 A 0.95
|
112 |
-
ALA 150 A 0.39
|
113 |
-
ILE 151 I 0.21
|
114 |
-
GLN 152 Q 0.86
|
115 |
-
HIS 153 H 0.11
|
116 |
-
CYS 154 C 0.30
|
117 |
-
HIS 155 H 0.12
|
118 |
-
SER 156 S 0.55
|
119 |
-
ARG 157 R 0.20
|
120 |
-
GLY 158 G 0.32
|
121 |
-
VAL 159 V 0.80
|
122 |
-
VAL 160 V 0.43
|
123 |
-
HIS 161 H 0.99
|
124 |
-
ARG 162 R 0.13
|
125 |
-
ASP 163 D 0.73
|
126 |
-
ILE 164 I 0.70
|
127 |
-
LYS 165 K 0.88
|
128 |
-
ASP 166 D 0.56
|
129 |
-
GLU 167 E 0.61
|
130 |
-
ASN 168 N 0.01
|
131 |
-
ILE 169 I 0.48
|
132 |
-
LEU 170 L 0.18
|
133 |
-
ILE 171 I 0.28
|
134 |
-
ASP 172 D 0.79
|
135 |
-
LEU 173 L 0.33
|
136 |
-
ARG 174 R 0.31
|
137 |
-
ARG 175 R 0.39
|
138 |
-
GLY 176 G 0.19
|
139 |
-
CYS 177 C 0.57
|
140 |
-
ALA 178 A 0.99
|
141 |
-
LYS 179 K 0.47
|
142 |
-
LEU 180 L 0.02
|
143 |
-
ILE 181 I 0.81
|
144 |
-
ASP 182 D 0.59
|
145 |
-
PHE 183 F 0.74
|
146 |
-
GLY 184 G 0.43
|
147 |
-
SER 185 S 0.90
|
148 |
-
GLY 186 G 0.87
|
149 |
-
ALA 187 A 0.39
|
150 |
-
LEU 188 L 0.43
|
151 |
-
LEU 189 L 0.84
|
152 |
-
HIS 190 H 0.91
|
153 |
-
ASP 191 D 0.45
|
154 |
-
GLU 192 E 0.00
|
155 |
-
PRO 193 P 0.86
|
156 |
-
TYR 194 Y 0.11
|
157 |
-
THR 195 T 0.54
|
158 |
-
ASP 196 D 0.70
|
159 |
-
PHE 197 F 0.62
|
160 |
-
ASP 198 D 0.31
|
161 |
-
GLY 199 G 0.41
|
162 |
-
THR 200 T 0.85
|
163 |
-
ARG 201 R 0.18
|
164 |
-
VAL 202 V 0.10
|
165 |
-
TYR 203 Y 0.22
|
166 |
-
SER 204 S 0.31
|
167 |
-
PRO 205 P 0.41
|
168 |
-
PRO 206 P 0.87
|
169 |
-
GLU 207 E 0.77
|
170 |
-
TRP 208 W 0.51
|
171 |
-
ILE 209 I 0.18
|
172 |
-
SER 210 S 0.03
|
173 |
-
ARG 211 R 0.41
|
174 |
-
HIS 212 H 0.83
|
175 |
-
GLN 213 Q 0.30
|
176 |
-
TYR 214 Y 0.38
|
177 |
-
HIS 215 H 0.28
|
178 |
-
ALA 216 A 0.51
|
179 |
-
LEU 217 L 0.61
|
180 |
-
PRO 218 P 0.77
|
181 |
-
ALA 219 A 0.79
|
182 |
-
THR 220 T 0.32
|
183 |
-
VAL 221 V 0.35
|
184 |
-
TRP 222 W 0.44
|
185 |
-
SER 223 S 0.35
|
186 |
-
LEU 224 L 0.67
|
187 |
-
GLY 225 G 0.21
|
188 |
-
ILE 226 I 0.88
|
189 |
-
LEU 227 L 0.38
|
190 |
-
LEU 228 L 0.27
|
191 |
-
TYR 229 Y 0.53
|
192 |
-
ASP 230 D 0.36
|
193 |
-
MET 231 M 0.76
|
194 |
-
VAL 232 V 0.59
|
195 |
-
CYS 233 C 0.44
|
196 |
-
GLY 234 G 0.88
|
197 |
-
ASP 235 D 0.54
|
198 |
-
ILE 236 I 0.63
|
199 |
-
PRO 237 P 0.41
|
200 |
-
PHE 238 F 0.84
|
201 |
-
GLU 239 E 0.66
|
202 |
-
ARG 240 R 0.20
|
203 |
-
ASP 241 D 0.08
|
204 |
-
GLN 242 Q 0.23
|
205 |
-
GLU 243 E 0.31
|
206 |
-
ILE 244 I 0.17
|
207 |
-
LEU 245 L 0.58
|
208 |
-
GLU 246 E 0.76
|
209 |
-
ALA 247 A 0.82
|
210 |
-
GLU 248 E 0.39
|
211 |
-
LEU 249 L 0.53
|
212 |
-
HIS 250 H 0.67
|
213 |
-
PHE 251 F 0.36
|
214 |
-
PRO 252 P 0.16
|
215 |
-
ALA 253 A 0.08
|
216 |
-
HIS 254 H 0.53
|
217 |
-
VAL 255 V 0.39
|
218 |
-
SER 256 S 0.24
|
219 |
-
PRO 257 P 0.06
|
220 |
-
ASP 258 D 0.79
|
221 |
-
CYS 259 C 0.54
|
222 |
-
CYS 260 C 0.46
|
223 |
-
ALA 261 A 0.29
|
224 |
-
LEU 262 L 0.60
|
225 |
-
ILE 263 I 0.33
|
226 |
-
ARG 264 R 0.56
|
227 |
-
ARG 265 R 0.95
|
228 |
-
CYS 266 C 0.63
|
229 |
-
LEU 267 L 0.83
|
230 |
-
ALA 268 A 0.22
|
231 |
-
PRO 269 P 0.18
|
232 |
-
LYS 270 K 0.71
|
233 |
-
PRO 271 P 0.91
|
234 |
-
SER 272 S 0.84
|
235 |
-
SER 273 S 0.62
|
236 |
-
ARG 274 R 0.22
|
237 |
-
PRO 275 P 0.34
|
238 |
-
SER 276 S 0.74
|
239 |
-
LEU 277 L 0.41
|
240 |
-
GLU 278 E 0.78
|
241 |
-
GLU 279 E 0.76
|
242 |
-
ILE 280 I 0.40
|
243 |
-
LEU 281 L 0.27
|
244 |
-
LEU 282 L 0.23
|
245 |
-
ASP 283 D 0.65
|
246 |
-
PRO 284 P 0.45
|
247 |
-
TRP 285 W 0.72
|
248 |
-
MET 286 M 0.57
|
249 |
-
GLN 287 Q 0.29
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4BDU.cif
DELETED
The diff for this file is too large to render.
See raw diff
|
|
4BDU.pdb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
4BDU_A_scored.pdb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
4BDU_C_scored.pdb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
4BDU_predictions.txt
DELETED
@@ -1,300 +0,0 @@
|
|
1 |
-
Prediction for PDB: 4BDU, Chain: A
|
2 |
-
Date: 2024-12-11 16:57:50
|
3 |
-
|
4 |
-
Columns: Residue Name, Residue Number, One-letter Code, Normalized Score
|
5 |
-
|
6 |
-
SER 2 S 0.05
|
7 |
-
LYS 3 K 0.39
|
8 |
-
GLY 4 G 0.24
|
9 |
-
GLU 5 E 0.26
|
10 |
-
GLU 6 E 0.35
|
11 |
-
LEU 7 L 0.45
|
12 |
-
PHE 8 F 0.82
|
13 |
-
THR 9 T 0.32
|
14 |
-
GLY 10 G 0.73
|
15 |
-
VAL 11 V 0.42
|
16 |
-
VAL 12 V 0.33
|
17 |
-
PRO 13 P 0.96
|
18 |
-
ILE 14 I 0.68
|
19 |
-
LEU 15 L 0.71
|
20 |
-
VAL 16 V 0.84
|
21 |
-
GLU 17 E 0.26
|
22 |
-
LEU 18 L 0.54
|
23 |
-
ASP 19 D 0.46
|
24 |
-
GLY 20 G 0.12
|
25 |
-
ASP 21 D 0.57
|
26 |
-
VAL 22 V 0.32
|
27 |
-
ASN 23 N 0.18
|
28 |
-
GLY 24 G 0.48
|
29 |
-
HIS 25 H 0.95
|
30 |
-
LYS 26 K 0.88
|
31 |
-
PHE 27 F 0.13
|
32 |
-
SER 28 S 0.12
|
33 |
-
VAL 29 V 0.58
|
34 |
-
SER 30 S 0.19
|
35 |
-
GLY 31 G 0.09
|
36 |
-
GLU 32 E 0.17
|
37 |
-
GLY 33 G 0.60
|
38 |
-
GLU 34 E 0.92
|
39 |
-
GLY 35 G 0.48
|
40 |
-
ASP 36 D 0.35
|
41 |
-
ALA 37 A 0.72
|
42 |
-
THR 38 T 0.47
|
43 |
-
TYR 39 Y 0.11
|
44 |
-
GLY 40 G 0.57
|
45 |
-
LYS 41 K 0.86
|
46 |
-
LEU 42 L 0.42
|
47 |
-
THR 43 T 0.98
|
48 |
-
LEU 44 L 0.27
|
49 |
-
LYS 45 K 0.05
|
50 |
-
PHE 46 F 0.54
|
51 |
-
ILE 47 I 0.25
|
52 |
-
CYS 48 C 0.73
|
53 |
-
THR 49 T 0.44
|
54 |
-
THR 50 T 0.85
|
55 |
-
GLY 51 G 0.17
|
56 |
-
LYS 52 K 0.72
|
57 |
-
LEU 53 L 0.03
|
58 |
-
PRO 54 P 0.26
|
59 |
-
VAL 55 V 0.64
|
60 |
-
PRO 56 P 0.88
|
61 |
-
TRP 57 W 0.84
|
62 |
-
PRO 58 P 0.71
|
63 |
-
THR 59 T 0.41
|
64 |
-
LEU 60 L 0.18
|
65 |
-
VAL 61 V 0.32
|
66 |
-
THR 62 T 0.87
|
67 |
-
THR 63 T 0.87
|
68 |
-
PHE 64 F 1.00
|
69 |
-
VAL 68 V 0.50
|
70 |
-
GLN 69 Q 0.10
|
71 |
-
CYS 70 C 0.71
|
72 |
-
PHE 71 F 0.47
|
73 |
-
SER 72 S 0.46
|
74 |
-
ARG 73 R 0.99
|
75 |
-
TYR 74 Y 0.40
|
76 |
-
PRO 75 P 0.78
|
77 |
-
ASP 76 D 0.42
|
78 |
-
HIS 77 H 0.93
|
79 |
-
MET 78 M 0.47
|
80 |
-
LYS 79 K 0.51
|
81 |
-
GLN 80 Q 0.85
|
82 |
-
HIS 81 H 0.11
|
83 |
-
ASP 82 D 0.87
|
84 |
-
PHE 83 F 0.13
|
85 |
-
PHE 84 F 0.56
|
86 |
-
LYS 85 K 0.44
|
87 |
-
SER 86 S 0.44
|
88 |
-
ALA 87 A 0.20
|
89 |
-
MET 88 M 0.33
|
90 |
-
PRO 89 P 0.77
|
91 |
-
GLU 90 E 0.32
|
92 |
-
GLY 91 G 0.80
|
93 |
-
TYR 92 Y 0.52
|
94 |
-
VAL 93 V 0.46
|
95 |
-
GLN 94 Q 0.26
|
96 |
-
GLU 95 E 0.03
|
97 |
-
ARG 96 R 0.99
|
98 |
-
THR 97 T 0.72
|
99 |
-
ILE 98 I 0.38
|
100 |
-
PHE 99 F 0.63
|
101 |
-
PHE 100 F 0.03
|
102 |
-
LYS 101 K 0.10
|
103 |
-
ASP 102 D 0.52
|
104 |
-
ASP 103 D 0.41
|
105 |
-
GLY 104 G 0.91
|
106 |
-
ASN 105 N 0.17
|
107 |
-
TYR 106 Y 0.75
|
108 |
-
LYS 107 K 0.07
|
109 |
-
THR 108 T 0.78
|
110 |
-
ARG 109 R 0.21
|
111 |
-
ALA 110 A 0.93
|
112 |
-
GLU 111 E 0.34
|
113 |
-
VAL 112 V 0.06
|
114 |
-
LYS 113 K 0.92
|
115 |
-
PHE 114 F 0.43
|
116 |
-
GLU 115 E 0.22
|
117 |
-
GLY 116 G 0.67
|
118 |
-
ASP 117 D 0.54
|
119 |
-
THR 118 T 0.18
|
120 |
-
LEU 119 L 0.33
|
121 |
-
VAL 120 V 0.52
|
122 |
-
ASN 121 N 0.23
|
123 |
-
ARG 122 R 0.18
|
124 |
-
ILE 123 I 0.52
|
125 |
-
GLU 124 E 0.85
|
126 |
-
LEU 125 L 0.66
|
127 |
-
LYS 126 K 0.69
|
128 |
-
GLY 127 G 0.46
|
129 |
-
ILE 128 I 0.48
|
130 |
-
ASP 129 D 0.55
|
131 |
-
PHE 130 F 0.90
|
132 |
-
LYS 131 K 1.00
|
133 |
-
GLU 132 E 0.98
|
134 |
-
ASP 133 D 0.41
|
135 |
-
GLY 134 G 0.78
|
136 |
-
ASN 135 N 0.12
|
137 |
-
ILE 136 I 0.06
|
138 |
-
LEU 137 L 0.80
|
139 |
-
GLY 138 G 0.70
|
140 |
-
HIS 139 H 0.52
|
141 |
-
LYS 140 K 0.40
|
142 |
-
LEU 141 L 0.97
|
143 |
-
GLU 142 E 0.25
|
144 |
-
TYR 143 Y 0.53
|
145 |
-
ASN 144 N 0.26
|
146 |
-
TYR 145 Y 0.67
|
147 |
-
ASN 146 N 0.65
|
148 |
-
SER 147 S 0.91
|
149 |
-
HIS 148 H 0.82
|
150 |
-
ASN 149 N 0.93
|
151 |
-
VAL 150 V 0.67
|
152 |
-
TYR 151 Y 0.87
|
153 |
-
ILE 152 I 0.02
|
154 |
-
MET 153 M 0.37
|
155 |
-
ALA 154 A 0.50
|
156 |
-
ASP 155 D 0.89
|
157 |
-
LYS 156 K 1.00
|
158 |
-
GLN 157 Q 0.96
|
159 |
-
LYS 158 K 0.83
|
160 |
-
ASN 159 N 0.95
|
161 |
-
GLY 160 G 0.02
|
162 |
-
ILE 161 I 0.57
|
163 |
-
LYS 162 K 0.82
|
164 |
-
VAL 163 V 0.66
|
165 |
-
ASN 164 N 0.32
|
166 |
-
PHE 165 F 0.50
|
167 |
-
LYS 166 K 0.11
|
168 |
-
ILE 167 I 0.49
|
169 |
-
ARG 168 R 0.20
|
170 |
-
HIS 169 H 0.82
|
171 |
-
ASN 170 N 0.34
|
172 |
-
ILE 171 I 0.91
|
173 |
-
GLU 172 E 0.28
|
174 |
-
ASP 173 D 0.02
|
175 |
-
GLY 174 G 0.09
|
176 |
-
SER 175 S 0.44
|
177 |
-
VAL 176 V 0.87
|
178 |
-
GLN 177 Q 0.65
|
179 |
-
LEU 178 L 0.88
|
180 |
-
ALA 179 A 0.89
|
181 |
-
ASP 180 D 0.53
|
182 |
-
HIS 181 H 0.89
|
183 |
-
TYR 182 Y 0.44
|
184 |
-
GLN 183 Q 0.02
|
185 |
-
GLN 184 Q 0.91
|
186 |
-
ASN 185 N 0.57
|
187 |
-
THR 186 T 0.00
|
188 |
-
PRO 187 P 0.97
|
189 |
-
ILE 188 I 0.17
|
190 |
-
GLY 189 G 0.57
|
191 |
-
ASP 190 D 0.46
|
192 |
-
GLY 191 G 0.08
|
193 |
-
PRO 192 P 0.85
|
194 |
-
VAL 193 V 0.09
|
195 |
-
LEU 194 L 0.79
|
196 |
-
LEU 195 L 0.61
|
197 |
-
PRO 196 P 0.72
|
198 |
-
ASP 197 D 0.29
|
199 |
-
ASN 198 N 0.95
|
200 |
-
HIS 199 H 0.78
|
201 |
-
TYR 200 Y 0.02
|
202 |
-
LEU 201 L 0.55
|
203 |
-
SER 202 S 0.63
|
204 |
-
THR 203 T 0.38
|
205 |
-
GLN 204 Q 0.18
|
206 |
-
SER 205 S 0.48
|
207 |
-
ASN 206 N 0.19
|
208 |
-
LEU 207 L 0.71
|
209 |
-
SER 208 S 0.56
|
210 |
-
LYS 209 K 0.56
|
211 |
-
ASP 210 D 0.98
|
212 |
-
PRO 211 P 0.43
|
213 |
-
ASN 212 N 0.91
|
214 |
-
GLU 213 E 0.76
|
215 |
-
LYS 214 K 0.58
|
216 |
-
ARG 215 R 0.42
|
217 |
-
ASP 216 D 0.81
|
218 |
-
HIS 217 H 0.96
|
219 |
-
MET 218 M 0.26
|
220 |
-
VAL 219 V 0.01
|
221 |
-
LEU 220 L 0.27
|
222 |
-
LEU 221 L 0.26
|
223 |
-
GLU 222 E 0.92
|
224 |
-
PHE 223 F 0.84
|
225 |
-
VAL 224 V 0.72
|
226 |
-
THR 225 T 1.00
|
227 |
-
ALA 226 A 0.55
|
228 |
-
ALA 227 A 0.72
|
229 |
-
GLY 228 G 0.44
|
230 |
-
ILE 229 I 0.01
|
231 |
-
THR 230 T 0.98
|
232 |
-
ALA 1054 A 0.83
|
233 |
-
SER 1055 S 0.78
|
234 |
-
THR 1056 T 0.55
|
235 |
-
LYS 1057 K 0.40
|
236 |
-
LYS 1058 K 0.06
|
237 |
-
LEU 1059 L 0.82
|
238 |
-
SER 1060 S 0.59
|
239 |
-
GLU 1061 E 0.68
|
240 |
-
SER 1062 S 0.28
|
241 |
-
LEU 1063 L 0.79
|
242 |
-
LYS 1064 K 0.94
|
243 |
-
ARG 1065 R 0.32
|
244 |
-
ILE 1066 I 0.28
|
245 |
-
GLY 1067 G 0.94
|
246 |
-
ASP 1068 D 0.19
|
247 |
-
GLU 1069 E 0.76
|
248 |
-
LEU 1070 L 0.19
|
249 |
-
ASP 1071 D 0.14
|
250 |
-
SER 1072 S 0.04
|
251 |
-
ASN 1073 N 0.39
|
252 |
-
MET 1074 M 0.50
|
253 |
-
GLU 1075 E 0.92
|
254 |
-
LEU 1076 L 0.81
|
255 |
-
GLN 1077 Q 0.04
|
256 |
-
ARG 1078 R 0.97
|
257 |
-
MET 1079 M 0.20
|
258 |
-
ILE 1080 I 0.90
|
259 |
-
ALA 1081 A 0.43
|
260 |
-
ALA 1082 A 0.93
|
261 |
-
VAL 1083 V 0.28
|
262 |
-
ASP 1084 D 0.29
|
263 |
-
THR 1085 T 0.83
|
264 |
-
ASP 1086 D 0.79
|
265 |
-
SER 1087 S 0.39
|
266 |
-
PRO 1088 P 0.85
|
267 |
-
ARG 1089 R 0.41
|
268 |
-
GLU 1090 E 0.08
|
269 |
-
VAL 1091 V 0.10
|
270 |
-
PHE 1092 F 0.15
|
271 |
-
PHE 1093 F 0.10
|
272 |
-
ARG 1094 R 0.59
|
273 |
-
VAL 1095 V 0.69
|
274 |
-
ALA 1096 A 0.50
|
275 |
-
ALA 1097 A 0.86
|
276 |
-
ASP 1098 D 0.77
|
277 |
-
MET 1099 M 0.60
|
278 |
-
PHE 1100 F 0.13
|
279 |
-
SER 1101 S 0.22
|
280 |
-
ASP 1102 D 0.29
|
281 |
-
GLY 1103 G 0.22
|
282 |
-
ASN 1104 N 0.01
|
283 |
-
PHE 1105 F 0.24
|
284 |
-
ASN 1106 N 0.48
|
285 |
-
TRP 1107 W 0.45
|
286 |
-
GLY 1108 G 0.52
|
287 |
-
ARG 1109 R 0.86
|
288 |
-
VAL 1110 V 0.68
|
289 |
-
VAL 1111 V 0.96
|
290 |
-
ALA 1112 A 0.01
|
291 |
-
LEU 1113 L 0.88
|
292 |
-
PHE 1114 F 0.66
|
293 |
-
TYR 1115 Y 0.11
|
294 |
-
PHE 1116 F 0.62
|
295 |
-
ALA 1117 A 0.62
|
296 |
-
SER 1118 S 0.26
|
297 |
-
LYS 1119 K 0.58
|
298 |
-
LEU 1120 L 0.18
|
299 |
-
VAL 1121 V 0.85
|
300 |
-
LEU 1122 L 0.27
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/model_loader.cpython-312.pyc
DELETED
Binary file (32.5 kB)
|
|
app.py
CHANGED
@@ -29,6 +29,22 @@ from datasets import Dataset
|
|
29 |
|
30 |
from scipy.special import expit
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
# Load model and move to device
|
@@ -39,6 +55,24 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
39 |
model.to(device)
|
40 |
model.eval()
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def normalize_scores(scores):
|
43 |
min_score = np.min(scores)
|
44 |
max_score = np.max(scores)
|
@@ -101,36 +135,44 @@ def fetch_pdb(pdb_id):
|
|
101 |
pdb_path = convert_cif_to_pdb(pdb_path)
|
102 |
return pdb_path
|
103 |
|
104 |
-
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list) -> str:
|
105 |
"""
|
106 |
-
Create a PDB file with only the
|
107 |
"""
|
108 |
# Read the original PDB file
|
109 |
parser = PDBParser(QUIET=True)
|
110 |
structure = parser.get_structure('protein', input_pdb)
|
111 |
|
112 |
-
# Prepare a new structure with only the specified chain
|
113 |
-
|
114 |
-
for model in new_structure:
|
115 |
-
# Remove all chains except the specified one
|
116 |
-
chains_to_remove = [chain for chain in model if chain.id != chain_id]
|
117 |
-
for chain in chains_to_remove:
|
118 |
-
model.detach_child(chain.id)
|
119 |
|
120 |
-
# Create
|
121 |
scores_dict = {resi: score for resi, score in residue_scores}
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
io = PDBIO()
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
|
135 |
return output_pdb
|
136 |
|
@@ -158,8 +200,6 @@ def calculate_geometric_center(pdb_path: str, high_score_residues: list, chain_i
|
|
158 |
return center
|
159 |
return None
|
160 |
|
161 |
-
|
162 |
-
|
163 |
def process_pdb(pdb_id_or_file, segment):
|
164 |
# Determine if input is a PDB ID or file path
|
165 |
if pdb_id_or_file.endswith('.pdb'):
|
@@ -192,67 +232,75 @@ def process_pdb(pdb_id_or_file, segment):
|
|
192 |
sequence = "".join(seq1(res.resname) for res in protein_residues)
|
193 |
sequence_id = [res.id[1] for res in protein_residues]
|
194 |
|
195 |
-
|
196 |
-
input_ids = tokenizer(" ".join(sequence), return_tensors="pt").input_ids.to(device)
|
197 |
-
with torch.no_grad():
|
198 |
-
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
199 |
-
|
200 |
-
# Calculate scores and normalize them
|
201 |
-
scores = expit(outputs[:, 1] - outputs[:, 0])
|
202 |
normalized_scores = normalize_scores(scores)
|
203 |
|
204 |
# Zip residues with scores to track the residue ID and score
|
205 |
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
#
|
212 |
-
geo_center = calculate_geometric_center(pdb_path, high_score_residues, segment)
|
213 |
-
pymol_selection = f"select high_score_residues, resi {'+'.join(map(str, high_score_residues))} and chain {segment}"
|
214 |
-
pymol_center_cmd = f"show spheres, resi {'+'.join(map(str, high_score_residues))} and chain {segment}" if geo_center is not None else ""
|
215 |
-
|
216 |
-
# Generate the result string
|
217 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
218 |
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
|
|
219 |
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
|
220 |
result_str += "\n".join([
|
221 |
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
222 |
-
for i, res in enumerate(protein_residues)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
# Create prediction and scored PDB files
|
225 |
-
prediction_file = f"{pdb_id}
|
226 |
with open(prediction_file, "w") as f:
|
227 |
f.write(result_str)
|
228 |
-
|
229 |
-
# Create chain-specific PDB with scores in B-factor
|
230 |
-
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores)
|
231 |
-
|
232 |
-
# Molecule visualization with updated script
|
233 |
-
mol_vis = molecule(pdb_path, residue_scores, segment)
|
234 |
-
|
235 |
-
# Construct PyMOL command suggestions
|
236 |
-
pymol_commands = f"""
|
237 |
-
PyMOL Visualization Commands:
|
238 |
-
1. Load PDB: load {os.path.abspath(pdb_path)}
|
239 |
-
2. Select high-scoring residues: {pymol_selection}
|
240 |
-
3. Highlight high-scoring residues: show sticks, high_score_residues
|
241 |
-
{pymol_center_cmd}
|
242 |
-
"""
|
243 |
|
244 |
-
return
|
245 |
-
|
246 |
|
247 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
|
248 |
mol = read_mol(input_pdb) # Read PDB file content
|
249 |
|
250 |
# Prepare high-scoring residues script if scores are provided
|
251 |
high_score_script = ""
|
252 |
if residue_scores is not None:
|
253 |
# Filter residues based on their scores
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
256 |
|
257 |
high_score_script = """
|
258 |
// Load the original model and apply white cartoon style
|
@@ -264,26 +312,57 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
264 |
);
|
265 |
|
266 |
// Create a new model for high-scoring residues and apply red sticks style
|
267 |
-
let
|
268 |
-
|
269 |
-
|
270 |
{"chain": "%s", "resi": [%s]},
|
271 |
-
{"stick": {"color": "
|
272 |
);
|
273 |
|
274 |
-
// Create a new model for
|
275 |
-
let
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
{"chain": "%s", "resi": [%s]},
|
279 |
{"stick": {"color": "orange"}}
|
280 |
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
""" % (
|
282 |
segment,
|
283 |
segment,
|
284 |
-
", ".join(str(resi) for resi in
|
285 |
segment,
|
286 |
-
", ".join(str(resi) for resi in
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
)
|
288 |
|
289 |
# Generate the full HTML content
|
@@ -351,14 +430,22 @@ def molecule(input_pdb, residue_scores=None, segment='A'):
|
|
351 |
# Return the HTML content within an iframe safely encoded for special characters
|
352 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
353 |
|
354 |
-
|
355 |
# Gradio UI
|
356 |
with gr.Blocks() as demo:
|
357 |
gr.Markdown("# Protein Binding Site Prediction")
|
358 |
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
|
364 |
{
|
@@ -375,23 +462,70 @@ with gr.Blocks() as demo:
|
|
375 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
376 |
prediction_btn = gr.Button("Predict Binding Site")
|
377 |
|
378 |
-
|
379 |
molecule_output = gr.HTML(label="Protein Structure")
|
380 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
download_output = gr.File(label="Download Files", file_count="multiple")
|
382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
prediction_btn.click(
|
384 |
-
|
385 |
-
inputs=[
|
386 |
-
pdb_input,
|
387 |
-
segment_input
|
388 |
-
],
|
389 |
outputs=[predictions_output, molecule_output, download_output]
|
390 |
)
|
391 |
|
392 |
visualize_btn.click(
|
393 |
-
|
394 |
-
inputs=[pdb_input],
|
395 |
outputs=molecule_output2
|
396 |
)
|
397 |
|
|
|
29 |
|
30 |
from scipy.special import expit
|
31 |
|
32 |
+
from datetime import datetime
|
33 |
+
import gradio as gr
|
34 |
+
import requests
|
35 |
+
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
|
36 |
+
from Bio.PDB.Polypeptide import is_aa
|
37 |
+
from Bio.SeqUtils import seq1
|
38 |
+
from typing import Optional, Tuple
|
39 |
+
import numpy as np
|
40 |
+
import os
|
41 |
+
from gradio_molecule3d import Molecule3D
|
42 |
+
|
43 |
+
import re
|
44 |
+
import pandas as pd
|
45 |
+
import copy
|
46 |
+
|
47 |
+
from scipy.special import expit
|
48 |
|
49 |
|
50 |
# Load model and move to device
|
|
|
55 |
model.to(device)
|
56 |
model.eval()
|
57 |
|
58 |
+
from datetime import datetime
|
59 |
+
import gradio as gr
|
60 |
+
import requests
|
61 |
+
from Bio.PDB import PDBParser, MMCIFParser, PDBIO
|
62 |
+
from Bio.PDB.Polypeptide import is_aa
|
63 |
+
from Bio.SeqUtils import seq1
|
64 |
+
from Bio.PDB import Select
|
65 |
+
from typing import Optional, Tuple
|
66 |
+
import numpy as np
|
67 |
+
import os
|
68 |
+
from gradio_molecule3d import Molecule3D
|
69 |
+
|
70 |
+
import re
|
71 |
+
import pandas as pd
|
72 |
+
import copy
|
73 |
+
|
74 |
+
from scipy.special import expit
|
75 |
+
|
76 |
def normalize_scores(scores):
|
77 |
min_score = np.min(scores)
|
78 |
max_score = np.max(scores)
|
|
|
135 |
pdb_path = convert_cif_to_pdb(pdb_path)
|
136 |
return pdb_path
|
137 |
|
138 |
+
def create_chain_specific_pdb(input_pdb: str, chain_id: str, residue_scores: list, protein_residues: list) -> str:
|
139 |
"""
|
140 |
+
Create a PDB file with only the selected chain and residues, replacing B-factor with prediction scores
|
141 |
"""
|
142 |
# Read the original PDB file
|
143 |
parser = PDBParser(QUIET=True)
|
144 |
structure = parser.get_structure('protein', input_pdb)
|
145 |
|
146 |
+
# Prepare a new structure with only the specified chain and selected residues
|
147 |
+
output_pdb = f"{os.path.splitext(input_pdb)[0]}_{chain_id}_predictions_scores.pdb"
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
# Create scores dictionary for easy lookup
|
150 |
scores_dict = {resi: score for resi, score in residue_scores}
|
151 |
+
|
152 |
+
# Create a custom Select class
|
153 |
+
class ResidueSelector(Select):
|
154 |
+
def __init__(self, chain_id, selected_residues, scores_dict):
|
155 |
+
self.chain_id = chain_id
|
156 |
+
self.selected_residues = selected_residues
|
157 |
+
self.scores_dict = scores_dict
|
158 |
+
|
159 |
+
def accept_chain(self, chain):
|
160 |
+
return chain.id == self.chain_id
|
161 |
+
|
162 |
+
def accept_residue(self, residue):
|
163 |
+
return residue.id[1] in self.selected_residues
|
164 |
+
|
165 |
+
def accept_atom(self, atom):
|
166 |
+
if atom.parent.id[1] in self.scores_dict:
|
167 |
+
atom.bfactor = self.scores_dict[atom.parent.id[1]] * 100
|
168 |
+
return True
|
169 |
+
|
170 |
+
# Prepare output PDB with selected chain and residues, modified B-factors
|
171 |
io = PDBIO()
|
172 |
+
selector = ResidueSelector(chain_id, [res.id[1] for res in protein_residues], scores_dict)
|
173 |
+
|
174 |
+
io.set_structure(structure[0])
|
175 |
+
io.save(output_pdb, selector)
|
176 |
|
177 |
return output_pdb
|
178 |
|
|
|
200 |
return center
|
201 |
return None
|
202 |
|
|
|
|
|
203 |
def process_pdb(pdb_id_or_file, segment):
|
204 |
# Determine if input is a PDB ID or file path
|
205 |
if pdb_id_or_file.endswith('.pdb'):
|
|
|
232 |
sequence = "".join(seq1(res.resname) for res in protein_residues)
|
233 |
sequence_id = [res.id[1] for res in protein_residues]
|
234 |
|
235 |
+
scores = np.random.rand(len(sequence))
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
normalized_scores = normalize_scores(scores)
|
237 |
|
238 |
# Zip residues with scores to track the residue ID and score
|
239 |
residue_scores = [(resi, score) for resi, score in zip(sequence_id, normalized_scores)]
|
240 |
|
241 |
+
|
242 |
+
# Identify high scoring residues (> 0.5)
|
243 |
+
high_score_residues = [resi for resi, score in residue_scores if score > 0.5]
|
244 |
+
|
245 |
+
# Preparing the result: only print high scoring residues
|
|
|
|
|
|
|
|
|
|
|
246 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
247 |
result_str = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
248 |
+
result_str += "High-scoring Residues (Score > 0.5):\n"
|
249 |
result_str += "Columns: Residue Name, Residue Number, One-letter Code, Normalized Score\n\n"
|
250 |
result_str += "\n".join([
|
251 |
f"{res.resname} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
252 |
+
for i, res in enumerate(protein_residues) if res.id[1] in high_score_residues
|
253 |
+
])
|
254 |
+
|
255 |
+
# Create chain-specific PDB with scores in B-factor
|
256 |
+
scored_pdb = create_chain_specific_pdb(pdb_path, segment, residue_scores, protein_residues)
|
257 |
+
|
258 |
+
# Molecule visualization with updated script with color mapping
|
259 |
+
mol_vis = molecule(pdb_path, residue_scores, segment)#, color_map)
|
260 |
+
|
261 |
+
# Improved PyMOL command suggestions
|
262 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
263 |
+
pymol_commands = f"Prediction for PDB: {pdb_id}, Chain: {segment}\nDate: {current_time}\n\n"
|
264 |
+
|
265 |
+
pymol_commands += f"""
|
266 |
+
# PyMOL Visualization Commands
|
267 |
+
load {os.path.abspath(pdb_path)}, protein
|
268 |
+
hide everything, all
|
269 |
+
show cartoon, chain {segment}
|
270 |
+
color white, chain {segment}
|
271 |
+
"""
|
272 |
|
273 |
+
# Color specific residues
|
274 |
+
for score_range, color in [
|
275 |
+
(high_score_residues, "red")
|
276 |
+
]:
|
277 |
+
if score_range:
|
278 |
+
resi_list = '+'.join(map(str, score_range))
|
279 |
+
pymol_commands += f"""
|
280 |
+
select high_score_residues, resi {resi_list} and chain {segment}
|
281 |
+
show sticks, high_score_residues
|
282 |
+
color {color}, high_score_residues
|
283 |
+
"""
|
284 |
# Create prediction and scored PDB files
|
285 |
+
prediction_file = f"{pdb_id}_binding_site_residues.txt"
|
286 |
with open(prediction_file, "w") as f:
|
287 |
f.write(result_str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
return pymol_commands, mol_vis, [prediction_file,scored_pdb]
|
|
|
290 |
|
291 |
def molecule(input_pdb, residue_scores=None, segment='A'):
|
292 |
+
# More granular scoring for visualization
|
293 |
mol = read_mol(input_pdb) # Read PDB file content
|
294 |
|
295 |
# Prepare high-scoring residues script if scores are provided
|
296 |
high_score_script = ""
|
297 |
if residue_scores is not None:
|
298 |
# Filter residues based on their scores
|
299 |
+
class1_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.6]
|
300 |
+
class2_score_residues = [resi for resi, score in residue_scores if 0.6 < score <= 0.7]
|
301 |
+
class3_score_residues = [resi for resi, score in residue_scores if 0.7 < score <= 0.8]
|
302 |
+
class4_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]
|
303 |
+
class5_score_residues = [resi for resi, score in residue_scores if 0.9 < score <= 1.0]
|
304 |
|
305 |
high_score_script = """
|
306 |
// Load the original model and apply white cartoon style
|
|
|
312 |
);
|
313 |
|
314 |
// Create a new model for high-scoring residues and apply red sticks style
|
315 |
+
let class1Model = viewer.addModel(pdb, "pdb");
|
316 |
+
class1Model.setStyle({}, {});
|
317 |
+
class1Model.setStyle(
|
318 |
{"chain": "%s", "resi": [%s]},
|
319 |
+
{"stick": {"color": "blue"}}
|
320 |
);
|
321 |
|
322 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
323 |
+
let class2Model = viewer.addModel(pdb, "pdb");
|
324 |
+
class2Model.setStyle({}, {});
|
325 |
+
class2Model.setStyle(
|
326 |
+
{"chain": "%s", "resi": [%s]},
|
327 |
+
{"stick": {"color": "lightblue"}}
|
328 |
+
);
|
329 |
+
|
330 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
331 |
+
let class3Model = viewer.addModel(pdb, "pdb");
|
332 |
+
class3Model.setStyle({}, {});
|
333 |
+
class3Model.setStyle(
|
334 |
+
{"chain": "%s", "resi": [%s]},
|
335 |
+
{"stick": {"color": "white"}}
|
336 |
+
);
|
337 |
+
|
338 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
339 |
+
let class4Model = viewer.addModel(pdb, "pdb");
|
340 |
+
class4Model.setStyle({}, {});
|
341 |
+
class4Model.setStyle(
|
342 |
{"chain": "%s", "resi": [%s]},
|
343 |
{"stick": {"color": "orange"}}
|
344 |
);
|
345 |
+
|
346 |
+
// Create a new model for high-scoring residues and apply red sticks style
|
347 |
+
let class5Model = viewer.addModel(pdb, "pdb");
|
348 |
+
class5Model.setStyle({}, {});
|
349 |
+
class5Model.setStyle(
|
350 |
+
{"chain": "%s", "resi": [%s]},
|
351 |
+
{"stick": {"color": "red"}}
|
352 |
+
);
|
353 |
+
|
354 |
""" % (
|
355 |
segment,
|
356 |
segment,
|
357 |
+
", ".join(str(resi) for resi in class1_score_residues),
|
358 |
segment,
|
359 |
+
", ".join(str(resi) for resi in class2_score_residues),
|
360 |
+
segment,
|
361 |
+
", ".join(str(resi) for resi in class3_score_residues),
|
362 |
+
segment,
|
363 |
+
", ".join(str(resi) for resi in class4_score_residues),
|
364 |
+
segment,
|
365 |
+
", ".join(str(resi) for resi in class5_score_residues)
|
366 |
)
|
367 |
|
368 |
# Generate the full HTML content
|
|
|
430 |
# Return the HTML content within an iframe safely encoded for special characters
|
431 |
return f'<iframe width="100%" height="700" srcdoc="{html_content.replace(chr(34), """).replace(chr(39), "'")}"></iframe>'
|
432 |
|
|
|
433 |
# Gradio UI
|
434 |
with gr.Blocks() as demo:
|
435 |
gr.Markdown("# Protein Binding Site Prediction")
|
436 |
|
437 |
+
# Mode selection
|
438 |
+
mode = gr.Radio(
|
439 |
+
choices=["PDB ID", "Upload File"],
|
440 |
+
value="PDB ID",
|
441 |
+
label="Input Mode",
|
442 |
+
info="Choose whether to input a PDB ID or upload a PDB/CIF file."
|
443 |
+
)
|
444 |
+
|
445 |
+
# Input components based on mode
|
446 |
+
pdb_input = gr.Textbox(value="4BDU", label="PDB ID", placeholder="Enter PDB ID here...")
|
447 |
+
pdb_file = gr.File(label="Upload PDB/CIF File", visible=False)
|
448 |
+
visualize_btn = gr.Button("Visualize Structure")
|
449 |
|
450 |
molecule_output2 = Molecule3D(label="Protein Structure", reps=[
|
451 |
{
|
|
|
462 |
segment_input = gr.Textbox(value="A", label="Chain ID", placeholder="Enter Chain ID here...")
|
463 |
prediction_btn = gr.Button("Predict Binding Site")
|
464 |
|
|
|
465 |
molecule_output = gr.HTML(label="Protein Structure")
|
466 |
+
explanation_vis = gr.Markdown("""
|
467 |
+
Residues with a score > 0.5 are considered binding sites and represented as sticks with the score dependent colorcoding:
|
468 |
+
- 0.5-0.6: blue
|
469 |
+
- 0.6–0.7: light blue
|
470 |
+
- 0.7–0.8: white
|
471 |
+
- 0.8–0.9: orange
|
472 |
+
- 0.9–1.0: red
|
473 |
+
""")
|
474 |
+
predictions_output = gr.Textbox(label="Visualize Prediction with PyMol")
|
475 |
+
gr.Markdown("### Download:\n- List of predicted binding site residues\n- PDB with score in beta factor column")
|
476 |
download_output = gr.File(label="Download Files", file_count="multiple")
|
477 |
|
478 |
+
def process_interface(mode, pdb_id, pdb_file, chain_id):
|
479 |
+
if mode == "PDB ID":
|
480 |
+
return process_pdb(pdb_id, chain_id)
|
481 |
+
elif mode == "Upload File":
|
482 |
+
_, ext = os.path.splitext(pdb_file.name)
|
483 |
+
file_path = os.path.join('./', f"{_}{ext}")
|
484 |
+
if ext == '.cif':
|
485 |
+
pdb_path = convert_cif_to_pdb(file_path)
|
486 |
+
else:
|
487 |
+
pdb_path= file_path
|
488 |
+
return process_pdb(pdb_path, chain_id)
|
489 |
+
else:
|
490 |
+
return "Error: Invalid mode selected", None, None
|
491 |
+
|
492 |
+
def fetch_interface(mode, pdb_id, pdb_file):
|
493 |
+
if mode == "PDB ID":
|
494 |
+
return fetch_pdb(pdb_id)
|
495 |
+
elif mode == "Upload File":
|
496 |
+
_, ext = os.path.splitext(pdb_file.name)
|
497 |
+
file_path = os.path.join('./', f"{_}{ext}")
|
498 |
+
#print(ext)
|
499 |
+
if ext == '.cif':
|
500 |
+
pdb_path = convert_cif_to_pdb(file_path)
|
501 |
+
else:
|
502 |
+
pdb_path= file_path
|
503 |
+
#print(pdb_path)
|
504 |
+
return pdb_path
|
505 |
+
else:
|
506 |
+
return "Error: Invalid mode selected"
|
507 |
+
|
508 |
+
def toggle_mode(selected_mode):
|
509 |
+
if selected_mode == "PDB ID":
|
510 |
+
return gr.update(visible=True), gr.update(visible=False)
|
511 |
+
else:
|
512 |
+
return gr.update(visible=False), gr.update(visible=True)
|
513 |
+
|
514 |
+
mode.change(
|
515 |
+
toggle_mode,
|
516 |
+
inputs=[mode],
|
517 |
+
outputs=[pdb_input, pdb_file]
|
518 |
+
)
|
519 |
+
|
520 |
prediction_btn.click(
|
521 |
+
process_interface,
|
522 |
+
inputs=[mode, pdb_input, pdb_file, segment_input],
|
|
|
|
|
|
|
523 |
outputs=[predictions_output, molecule_output, download_output]
|
524 |
)
|
525 |
|
526 |
visualize_btn.click(
|
527 |
+
fetch_interface,
|
528 |
+
inputs=[mode, pdb_input, pdb_file],
|
529 |
outputs=molecule_output2
|
530 |
)
|
531 |
|
test.ipynb
DELETED
@@ -1,846 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 3,
|
6 |
-
"id": "1f8ea359-674c-4263-9c2a-7a8e7e464249",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stdout",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"* Running on local URL: http://127.0.0.1:7862\n",
|
14 |
-
"\n",
|
15 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
16 |
-
]
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"data": {
|
20 |
-
"text/html": [
|
21 |
-
"<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
22 |
-
],
|
23 |
-
"text/plain": [
|
24 |
-
"<IPython.core.display.HTML object>"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
"metadata": {},
|
28 |
-
"output_type": "display_data"
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"data": {
|
32 |
-
"text/plain": []
|
33 |
-
},
|
34 |
-
"execution_count": 3,
|
35 |
-
"metadata": {},
|
36 |
-
"output_type": "execute_result"
|
37 |
-
}
|
38 |
-
],
|
39 |
-
"source": [
|
40 |
-
"import gradio as gr\n",
|
41 |
-
"import requests\n",
|
42 |
-
"from Bio.PDB import PDBParser\n",
|
43 |
-
"from gradio_molecule3d import Molecule3D\n",
|
44 |
-
"import numpy as np\n",
|
45 |
-
"\n",
|
46 |
-
"# Function to fetch a PDB file from RCSB PDB\n",
|
47 |
-
"def fetch_pdb(pdb_id):\n",
|
48 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
49 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
50 |
-
" response = requests.get(pdb_url)\n",
|
51 |
-
" if response.status_code == 200:\n",
|
52 |
-
" with open(pdb_path, 'wb') as f:\n",
|
53 |
-
" f.write(response.content)\n",
|
54 |
-
" return pdb_path\n",
|
55 |
-
" else:\n",
|
56 |
-
" return None\n",
|
57 |
-
"\n",
|
58 |
-
"# Function to process the PDB file and return random predictions\n",
|
59 |
-
"def process_pdb(pdb_id, segment):\n",
|
60 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
61 |
-
" if not pdb_path:\n",
|
62 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
63 |
-
"\n",
|
64 |
-
" parser = PDBParser(QUIET=True)\n",
|
65 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
66 |
-
" \n",
|
67 |
-
" try:\n",
|
68 |
-
" chain = structure[0][segment]\n",
|
69 |
-
" except KeyError:\n",
|
70 |
-
" return \"Invalid Chain ID\", None, None\n",
|
71 |
-
"\n",
|
72 |
-
" sequence = [residue.get_resname() for residue in chain if residue.id[0] == ' ']\n",
|
73 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
74 |
-
"\n",
|
75 |
-
" result_str = \"\\n\".join(\n",
|
76 |
-
" f\"{seq} {res.id[1]} {score:.2f}\" \n",
|
77 |
-
" for seq, res, score in zip(sequence, chain, random_scores)\n",
|
78 |
-
" )\n",
|
79 |
-
"\n",
|
80 |
-
" # Save the predictions to a file\n",
|
81 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
82 |
-
" with open(prediction_file, \"w\") as f:\n",
|
83 |
-
" f.write(result_str)\n",
|
84 |
-
" \n",
|
85 |
-
" return result_str, pdb_path, prediction_file\n",
|
86 |
-
"\n",
|
87 |
-
"#reps = [{\"model\": 0, \"style\": \"cartoon\", \"color\": \"spectrum\"}]\n",
|
88 |
-
"\n",
|
89 |
-
"reps = [\n",
|
90 |
-
" {\n",
|
91 |
-
" \"model\": 0,\n",
|
92 |
-
" \"style\": \"cartoon\",\n",
|
93 |
-
" \"color\": \"whiteCarbon\",\n",
|
94 |
-
" \"residue_range\": \"\",\n",
|
95 |
-
" \"around\": 0,\n",
|
96 |
-
" \"byres\": False,\n",
|
97 |
-
" },\n",
|
98 |
-
" {\n",
|
99 |
-
" \"model\": 0,\n",
|
100 |
-
" \"chain\": \"A\",\n",
|
101 |
-
" \"resname\": \"HIS\",\n",
|
102 |
-
" \"style\": \"stick\",\n",
|
103 |
-
" \"color\": \"red\"\n",
|
104 |
-
" }\n",
|
105 |
-
" ]\n",
|
106 |
-
"\n",
|
107 |
-
"\n",
|
108 |
-
"# Gradio UI\n",
|
109 |
-
"with gr.Blocks() as demo:\n",
|
110 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
111 |
-
"\n",
|
112 |
-
" with gr.Row():\n",
|
113 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
114 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
115 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
116 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
117 |
-
"\n",
|
118 |
-
" molecule_output = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
119 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
120 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
121 |
-
"\n",
|
122 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output)\n",
|
123 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
124 |
-
"\n",
|
125 |
-
" gr.Markdown(\"## Examples\")\n",
|
126 |
-
" gr.Examples(\n",
|
127 |
-
" examples=[\n",
|
128 |
-
" [\"2IWI\", \"A\"],\n",
|
129 |
-
" [\"7RPZ\", \"B\"],\n",
|
130 |
-
" [\"3TJN\", \"C\"]\n",
|
131 |
-
" ],\n",
|
132 |
-
" inputs=[pdb_input, segment_input],\n",
|
133 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
134 |
-
" )\n",
|
135 |
-
"\n",
|
136 |
-
"demo.launch()"
|
137 |
-
]
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"cell_type": "code",
|
141 |
-
"execution_count": null,
|
142 |
-
"id": "bd50ff2e-ed03-498e-8af2-73c0fb8ea07e",
|
143 |
-
"metadata": {},
|
144 |
-
"outputs": [],
|
145 |
-
"source": []
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"cell_type": "raw",
|
149 |
-
"id": "88affe12-7c48-4bd6-9e46-32cdffa729fe",
|
150 |
-
"metadata": {},
|
151 |
-
"source": [
|
152 |
-
"import gradio as gr\n",
|
153 |
-
"from gradio_molecule3d import Molecule3D\n",
|
154 |
-
"\n",
|
155 |
-
"\n",
|
156 |
-
"example = Molecule3D().example_value()\n",
|
157 |
-
"\n",
|
158 |
-
"\n",
|
159 |
-
"reps = [\n",
|
160 |
-
" {\n",
|
161 |
-
" \"model\": 0,\n",
|
162 |
-
" \"style\": \"cartoon\",\n",
|
163 |
-
" \"color\": \"whiteCarbon\",\n",
|
164 |
-
" \"residue_range\": \"\",\n",
|
165 |
-
" \"around\": 0,\n",
|
166 |
-
" \"byres\": False,\n",
|
167 |
-
" },\n",
|
168 |
-
" {\n",
|
169 |
-
" \"model\": 0,\n",
|
170 |
-
" \"chain\": \"A\",\n",
|
171 |
-
" \"resname\": \"HIS\",\n",
|
172 |
-
" \"style\": \"stick\",\n",
|
173 |
-
" \"color\": \"red\"\n",
|
174 |
-
" }\n",
|
175 |
-
" ]\n",
|
176 |
-
"\n",
|
177 |
-
"\n",
|
178 |
-
"\n",
|
179 |
-
"def predict(x):\n",
|
180 |
-
" print(\"predict function\", x)\n",
|
181 |
-
" print(x.name)\n",
|
182 |
-
" return x\n",
|
183 |
-
"\n",
|
184 |
-
"with gr.Blocks() as demo:\n",
|
185 |
-
" gr.Markdown(\"# Molecule3D\")\n",
|
186 |
-
" inp = Molecule3D(label=\"Molecule3D\", reps=reps)\n",
|
187 |
-
" out = Molecule3D(label=\"Output\", reps=reps)\n",
|
188 |
-
"\n",
|
189 |
-
" btn = gr.Button(\"Predict\")\n",
|
190 |
-
" gr.Markdown(\"\"\" \n",
|
191 |
-
" You can configure the default rendering of the molecule by adding a list of representations\n",
|
192 |
-
" <pre>\n",
|
193 |
-
" reps = [\n",
|
194 |
-
" {\n",
|
195 |
-
" \"model\": 0,\n",
|
196 |
-
" \"style\": \"cartoon\",\n",
|
197 |
-
" \"color\": \"whiteCarbon\",\n",
|
198 |
-
" \"residue_range\": \"\",\n",
|
199 |
-
" \"around\": 0,\n",
|
200 |
-
" \"byres\": False,\n",
|
201 |
-
" },\n",
|
202 |
-
" {\n",
|
203 |
-
" \"model\": 0,\n",
|
204 |
-
" \"chain\": \"A\",\n",
|
205 |
-
" \"resname\": \"HIS\",\n",
|
206 |
-
" \"style\": \"stick\",\n",
|
207 |
-
" \"color\": \"red\"\n",
|
208 |
-
" }\n",
|
209 |
-
" ]\n",
|
210 |
-
" </pre>\n",
|
211 |
-
" \"\"\")\n",
|
212 |
-
" btn.click(predict, inputs=inp, outputs=out)\n",
|
213 |
-
"\n",
|
214 |
-
"\n",
|
215 |
-
"if __name__ == \"__main__\":\n",
|
216 |
-
" demo.launch()"
|
217 |
-
]
|
218 |
-
},
|
219 |
-
{
|
220 |
-
"cell_type": "code",
|
221 |
-
"execution_count": null,
|
222 |
-
"id": "d27cc368-26a0-42c2-a68a-8833de7bb4a0",
|
223 |
-
"metadata": {},
|
224 |
-
"outputs": [],
|
225 |
-
"source": []
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"cell_type": "raw",
|
229 |
-
"id": "2b970adb-3152-427f-bb58-b92974ff406e",
|
230 |
-
"metadata": {},
|
231 |
-
"source": [
|
232 |
-
"import gradio as gr\n",
|
233 |
-
"import os\n",
|
234 |
-
"import requests\n",
|
235 |
-
"from Bio.PDB import PDBParser, PDBIO\n",
|
236 |
-
"import biotite.structure.io as bsio\n",
|
237 |
-
"\n",
|
238 |
-
"def read_mol(pdb_path):\n",
|
239 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
240 |
-
" with open(pdb_path, 'r') as f:\n",
|
241 |
-
" return f.read()\n",
|
242 |
-
"\n",
|
243 |
-
"# Function to fetch or upload the PDB file\n",
|
244 |
-
"def get_pdb(pdb_code=\"\", filepath=\"\"):\n",
|
245 |
-
" if pdb_code and len(pdb_code) == 4:\n",
|
246 |
-
" pdb_file = f\"{pdb_code}.pdb\"\n",
|
247 |
-
" if not os.path.exists(pdb_file):\n",
|
248 |
-
" os.system(f\"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb\")\n",
|
249 |
-
" return pdb_file\n",
|
250 |
-
" elif filepath is not None:\n",
|
251 |
-
" return filepath\n",
|
252 |
-
" else:\n",
|
253 |
-
" return None\n",
|
254 |
-
"\n",
|
255 |
-
"def molecule(input_pdb):\n",
|
256 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
257 |
-
" \n",
|
258 |
-
" html_content = f\"\"\"\n",
|
259 |
-
" <!DOCTYPE html>\n",
|
260 |
-
" <html>\n",
|
261 |
-
" <head> \n",
|
262 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
263 |
-
" <style>\n",
|
264 |
-
" .mol-container {{\n",
|
265 |
-
" width: 100%;\n",
|
266 |
-
" height: 700px;\n",
|
267 |
-
" position: relative;\n",
|
268 |
-
" }}\n",
|
269 |
-
" </style>\n",
|
270 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
271 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
272 |
-
" </head>\n",
|
273 |
-
" <body>\n",
|
274 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
275 |
-
" <script>\n",
|
276 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
277 |
-
" $(document).ready(function () {{\n",
|
278 |
-
" let element = $(\"#container\");\n",
|
279 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
280 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
281 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
282 |
-
" viewer.getModel(0).setStyle({{}}, {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }});\n",
|
283 |
-
" viewer.zoomTo();\n",
|
284 |
-
" viewer.render();\n",
|
285 |
-
" viewer.zoom(0.8, 2000);\n",
|
286 |
-
" }});\n",
|
287 |
-
" </script>\n",
|
288 |
-
" </body>\n",
|
289 |
-
" </html>\n",
|
290 |
-
" \"\"\"\n",
|
291 |
-
" \n",
|
292 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
293 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
294 |
-
"\n",
|
295 |
-
"# Gradio function to update the visualization\n",
|
296 |
-
"def update(inp, file):\n",
|
297 |
-
" pdb_path = get_pdb(inp, file)\n",
|
298 |
-
" if pdb_path:\n",
|
299 |
-
" return molecule(pdb_path)\n",
|
300 |
-
" else:\n",
|
301 |
-
" return \"Invalid input. Please provide a valid PDB code or upload a PDB file.\"\n",
|
302 |
-
"\n",
|
303 |
-
"# Gradio UI\n",
|
304 |
-
"demo = gr.Blocks()\n",
|
305 |
-
"with demo:\n",
|
306 |
-
" gr.Markdown(\"# PDB Viewer using 3Dmol.js\")\n",
|
307 |
-
" with gr.Row():\n",
|
308 |
-
" with gr.Column():\n",
|
309 |
-
" inp = gr.Textbox(\n",
|
310 |
-
" placeholder=\"PDB Code or upload file below\", label=\"Input structure\"\n",
|
311 |
-
" )\n",
|
312 |
-
" file = gr.File(file_count=\"single\")\n",
|
313 |
-
" btn = gr.Button(\"View structure\")\n",
|
314 |
-
" mol = gr.HTML()\n",
|
315 |
-
" btn.click(fn=update, inputs=[inp, file], outputs=mol)\n",
|
316 |
-
"\n",
|
317 |
-
"# Launch the Gradio interface \n",
|
318 |
-
"demo.launch(debug=True)"
|
319 |
-
]
|
320 |
-
},
|
321 |
-
{
|
322 |
-
"cell_type": "code",
|
323 |
-
"execution_count": null,
|
324 |
-
"id": "ee215c16-a1fb-450f-bb93-37aaee6fb3f1",
|
325 |
-
"metadata": {},
|
326 |
-
"outputs": [],
|
327 |
-
"source": []
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"cell_type": "raw",
|
331 |
-
"id": "050aa2e8-2dbe-4a28-8692-58ca7c50fccd",
|
332 |
-
"metadata": {},
|
333 |
-
"source": [
|
334 |
-
"import gradio as gr\n",
|
335 |
-
"import os\n",
|
336 |
-
"import requests\n",
|
337 |
-
"import numpy as np\n",
|
338 |
-
"from Bio.PDB import PDBParser\n",
|
339 |
-
"\n",
|
340 |
-
"def read_mol(pdb_path):\n",
|
341 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
342 |
-
" with open(pdb_path, 'r') as f:\n",
|
343 |
-
" return f.read()\n",
|
344 |
-
"\n",
|
345 |
-
"# Function to fetch a PDB file from RCSB PDB\n",
|
346 |
-
"def fetch_pdb(pdb_id):\n",
|
347 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
348 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
349 |
-
" response = requests.get(pdb_url)\n",
|
350 |
-
" if response.status_code == 200:\n",
|
351 |
-
" with open(pdb_path, 'wb') as f:\n",
|
352 |
-
" f.write(response.content)\n",
|
353 |
-
" return molecule(pdb_path)\n",
|
354 |
-
" else:\n",
|
355 |
-
" return None\n",
|
356 |
-
"\n",
|
357 |
-
"# Function to process the PDB file and return random predictions\n",
|
358 |
-
"def process_pdb(pdb_id, segment):\n",
|
359 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
360 |
-
" if not pdb_path:\n",
|
361 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
362 |
-
" \n",
|
363 |
-
" parser = PDBParser(QUIET=True)\n",
|
364 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
365 |
-
" \n",
|
366 |
-
" try:\n",
|
367 |
-
" chain = structure[0][segment]\n",
|
368 |
-
" except KeyError:\n",
|
369 |
-
" return \"Invalid Chain ID\", None, None\n",
|
370 |
-
" \n",
|
371 |
-
" sequence = [residue.get_resname() for residue in chain if residue.id[0] == ' ']\n",
|
372 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
373 |
-
" result_str = \"\\n\".join(\n",
|
374 |
-
" f\"{seq} {res.id[1]} {score:.2f}\" \n",
|
375 |
-
" for seq, res, score in zip(sequence, chain, random_scores)\n",
|
376 |
-
" )\n",
|
377 |
-
" \n",
|
378 |
-
" # Save the predictions to a file\n",
|
379 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
380 |
-
" with open(prediction_file, \"w\") as f:\n",
|
381 |
-
" f.write(result_str)\n",
|
382 |
-
" \n",
|
383 |
-
" return result_str, molecule(pdb_path), prediction_file\n",
|
384 |
-
"\n",
|
385 |
-
"def molecule(input_pdb):\n",
|
386 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
387 |
-
" \n",
|
388 |
-
" html_content = f\"\"\"\n",
|
389 |
-
" <!DOCTYPE html>\n",
|
390 |
-
" <html>\n",
|
391 |
-
" <head> \n",
|
392 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
393 |
-
" <style>\n",
|
394 |
-
" .mol-container {{\n",
|
395 |
-
" width: 100%;\n",
|
396 |
-
" height: 700px;\n",
|
397 |
-
" position: relative;\n",
|
398 |
-
" }}\n",
|
399 |
-
" </style>\n",
|
400 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
401 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
402 |
-
" </head>\n",
|
403 |
-
" <body>\n",
|
404 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
405 |
-
" <script>\n",
|
406 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
407 |
-
" $(document).ready(function () {{\n",
|
408 |
-
" let element = $(\"#container\");\n",
|
409 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
410 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
411 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
412 |
-
" \n",
|
413 |
-
" // Set cartoon representation with white carbon color scheme\n",
|
414 |
-
" viewer.getModel(0).setStyle({{}}, {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }});\n",
|
415 |
-
" \n",
|
416 |
-
" // Highlight specific histidine residues in red stick representation\n",
|
417 |
-
" viewer.getModel(0).setStyle(\n",
|
418 |
-
" {{\"resn\": \"HIS\"}}, \n",
|
419 |
-
" {{\"stick\": {{\"color\": \"red\"}}}}\n",
|
420 |
-
" );\n",
|
421 |
-
" \n",
|
422 |
-
" viewer.zoomTo();\n",
|
423 |
-
" viewer.render();\n",
|
424 |
-
" viewer.zoom(0.8, 2000);\n",
|
425 |
-
" }});\n",
|
426 |
-
" </script>\n",
|
427 |
-
" </body>\n",
|
428 |
-
" </html>\n",
|
429 |
-
" \"\"\"\n",
|
430 |
-
" \n",
|
431 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
432 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
433 |
-
"\n",
|
434 |
-
"# Gradio UI\n",
|
435 |
-
"with gr.Blocks() as demo:\n",
|
436 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
437 |
-
" with gr.Row():\n",
|
438 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
439 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
440 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
441 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
442 |
-
" \n",
|
443 |
-
" # Use HTML output instead of Molecule3D\n",
|
444 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
445 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
446 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
447 |
-
" \n",
|
448 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output)\n",
|
449 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
450 |
-
" \n",
|
451 |
-
" gr.Markdown(\"## Examples\")\n",
|
452 |
-
" gr.Examples(\n",
|
453 |
-
" examples=[\n",
|
454 |
-
" [\"2IWI\", \"A\"],\n",
|
455 |
-
" [\"7RPZ\", \"B\"],\n",
|
456 |
-
" [\"3TJN\", \"C\"]\n",
|
457 |
-
" ],\n",
|
458 |
-
" inputs=[pdb_input, segment_input],\n",
|
459 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
460 |
-
" )\n",
|
461 |
-
"\n",
|
462 |
-
"demo.launch(debug=True)"
|
463 |
-
]
|
464 |
-
},
|
465 |
-
{
|
466 |
-
"cell_type": "code",
|
467 |
-
"execution_count": null,
|
468 |
-
"id": "9a5facd9-855c-4b35-8dd3-2c0c8c7dd356",
|
469 |
-
"metadata": {},
|
470 |
-
"outputs": [],
|
471 |
-
"source": []
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"cell_type": "raw",
|
475 |
-
"id": "a762170f-92a9-473d-b18d-53607a780e3b",
|
476 |
-
"metadata": {},
|
477 |
-
"source": [
|
478 |
-
"import gradio as gr\n",
|
479 |
-
"import requests\n",
|
480 |
-
"from Bio.PDB import PDBParser\n",
|
481 |
-
"import numpy as np\n",
|
482 |
-
"import os\n",
|
483 |
-
"\n",
|
484 |
-
"def read_mol(pdb_path):\n",
|
485 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
486 |
-
" with open(pdb_path, 'r') as f:\n",
|
487 |
-
" return f.read()\n",
|
488 |
-
"\n",
|
489 |
-
"# Function to fetch a PDB file from RCSB PDB\n",
|
490 |
-
"def fetch_pdb(pdb_id):\n",
|
491 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
492 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
493 |
-
" response = requests.get(pdb_url)\n",
|
494 |
-
" if response.status_code == 200:\n",
|
495 |
-
" with open(pdb_path, 'wb') as f:\n",
|
496 |
-
" f.write(response.content)\n",
|
497 |
-
" return pdb_path\n",
|
498 |
-
" else:\n",
|
499 |
-
" return None\n",
|
500 |
-
"\n",
|
501 |
-
"# Function to process the PDB file and return random predictions\n",
|
502 |
-
"def process_pdb(pdb_id, segment):\n",
|
503 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
504 |
-
" if not pdb_path:\n",
|
505 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
506 |
-
" parser = PDBParser(QUIET=True)\n",
|
507 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
508 |
-
" \n",
|
509 |
-
" try:\n",
|
510 |
-
" chain = structure[0][segment]\n",
|
511 |
-
" except KeyError:\n",
|
512 |
-
" return \"Invalid Chain ID\", None, None\n",
|
513 |
-
" sequence = [residue.get_resname() for residue in chain if residue.id[0] == ' ']\n",
|
514 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
515 |
-
" result_str = \"\\n\".join(\n",
|
516 |
-
" f\"{seq} {res.id[1]} {score:.2f}\" \n",
|
517 |
-
" for seq, res, score in zip(sequence, chain, random_scores)\n",
|
518 |
-
" )\n",
|
519 |
-
" # Save the predictions to a file\n",
|
520 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
521 |
-
" with open(prediction_file, \"w\") as f:\n",
|
522 |
-
" f.write(result_str)\n",
|
523 |
-
" \n",
|
524 |
-
" return result_str, molecule(pdb_path), prediction_file\n",
|
525 |
-
"\n",
|
526 |
-
"def molecule(input_pdb):\n",
|
527 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
528 |
-
" \n",
|
529 |
-
" html_content = f\"\"\"\n",
|
530 |
-
" <!DOCTYPE html>\n",
|
531 |
-
" <html>\n",
|
532 |
-
" <head> \n",
|
533 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
534 |
-
" <style>\n",
|
535 |
-
" .mol-container {{\n",
|
536 |
-
" width: 100%;\n",
|
537 |
-
" height: 700px;\n",
|
538 |
-
" position: relative;\n",
|
539 |
-
" }}\n",
|
540 |
-
" </style>\n",
|
541 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
542 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
543 |
-
" </head>\n",
|
544 |
-
" <body>\n",
|
545 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
546 |
-
" <script>\n",
|
547 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
548 |
-
" $(document).ready(function () {{\n",
|
549 |
-
" let element = $(\"#container\");\n",
|
550 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
551 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
552 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
553 |
-
" \n",
|
554 |
-
" // Set cartoon representation with white carbon color scheme\n",
|
555 |
-
" viewer.getModel(0).setStyle({{}}, {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }});\n",
|
556 |
-
" \n",
|
557 |
-
" // Highlight specific histidine residues in red stick representation\n",
|
558 |
-
" viewer.getModel(0).setStyle(\n",
|
559 |
-
" {{\"resn\": \"HIS\"}}, \n",
|
560 |
-
" {{\"stick\": {{\"color\": \"red\"}}}}\n",
|
561 |
-
" );\n",
|
562 |
-
" \n",
|
563 |
-
" viewer.zoomTo();\n",
|
564 |
-
" viewer.render();\n",
|
565 |
-
" viewer.zoom(0.8, 2000);\n",
|
566 |
-
" }});\n",
|
567 |
-
" </script>\n",
|
568 |
-
" </body>\n",
|
569 |
-
" </html>\n",
|
570 |
-
" \"\"\"\n",
|
571 |
-
" \n",
|
572 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
573 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
574 |
-
"\n",
|
575 |
-
"# Gradio UI\n",
|
576 |
-
"with gr.Blocks() as demo:\n",
|
577 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
578 |
-
" with gr.Row():\n",
|
579 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
580 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
581 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
582 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
583 |
-
" \n",
|
584 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
585 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
586 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
587 |
-
" \n",
|
588 |
-
" # Update to explicitly use molecule() function for visualization\n",
|
589 |
-
" visualize_btn.click(\n",
|
590 |
-
" fn=lambda pdb_id: molecule(fetch_pdb(pdb_id)), \n",
|
591 |
-
" inputs=[pdb_input], \n",
|
592 |
-
" outputs=molecule_output\n",
|
593 |
-
" )\n",
|
594 |
-
" \n",
|
595 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
596 |
-
" \n",
|
597 |
-
" gr.Markdown(\"## Examples\")\n",
|
598 |
-
" gr.Examples(\n",
|
599 |
-
" examples=[\n",
|
600 |
-
" [\"2IWI\", \"A\"],\n",
|
601 |
-
" [\"7RPZ\", \"B\"],\n",
|
602 |
-
" [\"3TJN\", \"C\"]\n",
|
603 |
-
" ],\n",
|
604 |
-
" inputs=[pdb_input, segment_input],\n",
|
605 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
606 |
-
" )\n",
|
607 |
-
"\n",
|
608 |
-
"demo.launch()"
|
609 |
-
]
|
610 |
-
},
|
611 |
-
{
|
612 |
-
"cell_type": "code",
|
613 |
-
"execution_count": null,
|
614 |
-
"id": "15527a58-c449-4da0-8fab-3baaede15e41",
|
615 |
-
"metadata": {},
|
616 |
-
"outputs": [],
|
617 |
-
"source": []
|
618 |
-
},
|
619 |
-
{
|
620 |
-
"cell_type": "code",
|
621 |
-
"execution_count": 2,
|
622 |
-
"id": "9ef3e330-cb88-4c29-b84a-2f8652883cfc",
|
623 |
-
"metadata": {},
|
624 |
-
"outputs": [
|
625 |
-
{
|
626 |
-
"name": "stdout",
|
627 |
-
"output_type": "stream",
|
628 |
-
"text": [
|
629 |
-
"* Running on local URL: http://127.0.0.1:7860\n",
|
630 |
-
"\n",
|
631 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
632 |
-
]
|
633 |
-
},
|
634 |
-
{
|
635 |
-
"data": {
|
636 |
-
"text/html": [
|
637 |
-
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
638 |
-
],
|
639 |
-
"text/plain": [
|
640 |
-
"<IPython.core.display.HTML object>"
|
641 |
-
]
|
642 |
-
},
|
643 |
-
"metadata": {},
|
644 |
-
"output_type": "display_data"
|
645 |
-
},
|
646 |
-
{
|
647 |
-
"data": {
|
648 |
-
"text/plain": []
|
649 |
-
},
|
650 |
-
"execution_count": 2,
|
651 |
-
"metadata": {},
|
652 |
-
"output_type": "execute_result"
|
653 |
-
}
|
654 |
-
],
|
655 |
-
"source": [
|
656 |
-
"import gradio as gr\n",
|
657 |
-
"import requests\n",
|
658 |
-
"from Bio.PDB import PDBParser\n",
|
659 |
-
"import numpy as np\n",
|
660 |
-
"import os\n",
|
661 |
-
"from gradio_molecule3d import Molecule3D\n",
|
662 |
-
"\n",
|
663 |
-
"def read_mol(pdb_path):\n",
|
664 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
665 |
-
" with open(pdb_path, 'r') as f:\n",
|
666 |
-
" return f.read()\n",
|
667 |
-
"\n",
|
668 |
-
"def fetch_pdb(pdb_id):\n",
|
669 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
670 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
671 |
-
" response = requests.get(pdb_url)\n",
|
672 |
-
" if response.status_code == 200:\n",
|
673 |
-
" with open(pdb_path, 'wb') as f:\n",
|
674 |
-
" f.write(response.content)\n",
|
675 |
-
" return pdb_path\n",
|
676 |
-
" else:\n",
|
677 |
-
" return None\n",
|
678 |
-
"\n",
|
679 |
-
"def process_pdb(pdb_id, segment):\n",
|
680 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
681 |
-
" if not pdb_path:\n",
|
682 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
683 |
-
" parser = PDBParser(QUIET=True)\n",
|
684 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
685 |
-
" \n",
|
686 |
-
" try:\n",
|
687 |
-
" chain = structure[0][segment]\n",
|
688 |
-
" except KeyError:\n",
|
689 |
-
" return \"Invalid Chain ID\", None, None\n",
|
690 |
-
" sequence = [residue.get_resname() for residue in chain if residue.id[0] == ' ']\n",
|
691 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
692 |
-
" result_str = \"\\n\".join(\n",
|
693 |
-
" f\"{seq} {res.id[1]} {score:.2f}\" \n",
|
694 |
-
" for seq, res, score in zip(sequence, chain, random_scores)\n",
|
695 |
-
" )\n",
|
696 |
-
" # Save the predictions to a file\n",
|
697 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
698 |
-
" with open(prediction_file, \"w\") as f:\n",
|
699 |
-
" f.write(result_str)\n",
|
700 |
-
" \n",
|
701 |
-
" return result_str, molecule(pdb_path, random_scores), prediction_file\n",
|
702 |
-
"\n",
|
703 |
-
"def molecule(input_pdb, scores=None):\n",
|
704 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
705 |
-
" \n",
|
706 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
707 |
-
" high_score_script = \"\"\n",
|
708 |
-
" if scores is not None:\n",
|
709 |
-
" high_score_script = \"\"\"\n",
|
710 |
-
" // Highlight residues with high scores\n",
|
711 |
-
" let highScoreResidues = [{}];\n",
|
712 |
-
" viewer.getModel(0).setStyle(\n",
|
713 |
-
" {{\"resi\": highScoreResidues}}, \n",
|
714 |
-
" {{\"stick\": {{\"color\": \"red\"}}}}\n",
|
715 |
-
" );\n",
|
716 |
-
" \"\"\".format(\n",
|
717 |
-
" \", \".join(str(i+1) for i, score in enumerate(scores) if score > 0.8)\n",
|
718 |
-
" )\n",
|
719 |
-
" \n",
|
720 |
-
" html_content = f\"\"\"\n",
|
721 |
-
" <!DOCTYPE html>\n",
|
722 |
-
" <html>\n",
|
723 |
-
" <head> \n",
|
724 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
725 |
-
" <style>\n",
|
726 |
-
" .mol-container {{\n",
|
727 |
-
" width: 100%;\n",
|
728 |
-
" height: 700px;\n",
|
729 |
-
" position: relative;\n",
|
730 |
-
" }}\n",
|
731 |
-
" </style>\n",
|
732 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
733 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
734 |
-
" </head>\n",
|
735 |
-
" <body>\n",
|
736 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
737 |
-
" <script>\n",
|
738 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
739 |
-
" $(document).ready(function () {{\n",
|
740 |
-
" let element = $(\"#container\");\n",
|
741 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
742 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
743 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
744 |
-
" \n",
|
745 |
-
" // Set cartoon representation with white carbon color scheme\n",
|
746 |
-
" viewer.getModel(0).setStyle({{}}, {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }});\n",
|
747 |
-
" \n",
|
748 |
-
" {high_score_script}\n",
|
749 |
-
" \n",
|
750 |
-
" viewer.zoomTo();\n",
|
751 |
-
" viewer.render();\n",
|
752 |
-
" viewer.zoom(0.8, 2000);\n",
|
753 |
-
" }});\n",
|
754 |
-
" </script>\n",
|
755 |
-
" </body>\n",
|
756 |
-
" </html>\n",
|
757 |
-
" \"\"\"\n",
|
758 |
-
" \n",
|
759 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
760 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
761 |
-
"\n",
|
762 |
-
"reps = [\n",
|
763 |
-
" {\n",
|
764 |
-
" \"model\": 0,\n",
|
765 |
-
" \"style\": \"cartoon\",\n",
|
766 |
-
" \"color\": \"whiteCarbon\",\n",
|
767 |
-
" \"residue_range\": \"\",\n",
|
768 |
-
" \"around\": 0,\n",
|
769 |
-
" \"byres\": False,\n",
|
770 |
-
" }\n",
|
771 |
-
" ]\n",
|
772 |
-
"# Gradio UI\n",
|
773 |
-
"with gr.Blocks() as demo:\n",
|
774 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
775 |
-
" with gr.Row():\n",
|
776 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
777 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
778 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
779 |
-
" #prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
780 |
-
"\n",
|
781 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
782 |
-
"\n",
|
783 |
-
" with gr.Row():\n",
|
784 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
785 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
786 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
787 |
-
"\n",
|
788 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
789 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
790 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
791 |
-
" \n",
|
792 |
-
" #visualize_btn.click(\n",
|
793 |
-
" # fn=lambda pdb_id: molecule(fetch_pdb(pdb_id)), \n",
|
794 |
-
" # inputs=[pdb_input], \n",
|
795 |
-
" # outputs=molecule_output\n",
|
796 |
-
" #)\n",
|
797 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
798 |
-
" \n",
|
799 |
-
" \n",
|
800 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
801 |
-
" \n",
|
802 |
-
" gr.Markdown(\"## Examples\")\n",
|
803 |
-
" gr.Examples(\n",
|
804 |
-
" examples=[\n",
|
805 |
-
" [\"2IWI\", \"A\"],\n",
|
806 |
-
" [\"7RPZ\", \"B\"],\n",
|
807 |
-
" [\"3TJN\", \"C\"]\n",
|
808 |
-
" ],\n",
|
809 |
-
" inputs=[pdb_input, segment_input],\n",
|
810 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
811 |
-
" )\n",
|
812 |
-
"\n",
|
813 |
-
"demo.launch()"
|
814 |
-
]
|
815 |
-
},
|
816 |
-
{
|
817 |
-
"cell_type": "code",
|
818 |
-
"execution_count": null,
|
819 |
-
"id": "14605615-8610-4d9e-841b-db7618cde844",
|
820 |
-
"metadata": {},
|
821 |
-
"outputs": [],
|
822 |
-
"source": []
|
823 |
-
}
|
824 |
-
],
|
825 |
-
"metadata": {
|
826 |
-
"kernelspec": {
|
827 |
-
"display_name": "Python (LLM)",
|
828 |
-
"language": "python",
|
829 |
-
"name": "llm"
|
830 |
-
},
|
831 |
-
"language_info": {
|
832 |
-
"codemirror_mode": {
|
833 |
-
"name": "ipython",
|
834 |
-
"version": 3
|
835 |
-
},
|
836 |
-
"file_extension": ".py",
|
837 |
-
"mimetype": "text/x-python",
|
838 |
-
"name": "python",
|
839 |
-
"nbconvert_exporter": "python",
|
840 |
-
"pygments_lexer": "ipython3",
|
841 |
-
"version": "3.12.7"
|
842 |
-
}
|
843 |
-
},
|
844 |
-
"nbformat": 4,
|
845 |
-
"nbformat_minor": 5
|
846 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
test2.ipynb
DELETED
@@ -1,1598 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 2,
|
6 |
-
"id": "f3b7f6b0-6685-4a5c-9529-45e0ca905a3b",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stdout",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"* Running on local URL: http://127.0.0.1:7860\n",
|
14 |
-
"\n",
|
15 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
16 |
-
]
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"data": {
|
20 |
-
"text/html": [
|
21 |
-
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
22 |
-
],
|
23 |
-
"text/plain": [
|
24 |
-
"<IPython.core.display.HTML object>"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
"metadata": {},
|
28 |
-
"output_type": "display_data"
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"data": {
|
32 |
-
"text/plain": []
|
33 |
-
},
|
34 |
-
"execution_count": 2,
|
35 |
-
"metadata": {},
|
36 |
-
"output_type": "execute_result"
|
37 |
-
}
|
38 |
-
],
|
39 |
-
"source": [
|
40 |
-
"import gradio as gr\n",
|
41 |
-
"import requests\n",
|
42 |
-
"from Bio.PDB import PDBParser\n",
|
43 |
-
"import numpy as np\n",
|
44 |
-
"import os\n",
|
45 |
-
"from gradio_molecule3d import Molecule3D\n",
|
46 |
-
"\n",
|
47 |
-
"def read_mol(pdb_path):\n",
|
48 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
49 |
-
" with open(pdb_path, 'r') as f:\n",
|
50 |
-
" return f.read()\n",
|
51 |
-
"\n",
|
52 |
-
"def fetch_pdb(pdb_id):\n",
|
53 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
54 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
55 |
-
" response = requests.get(pdb_url)\n",
|
56 |
-
" if response.status_code == 200:\n",
|
57 |
-
" with open(pdb_path, 'wb') as f:\n",
|
58 |
-
" f.write(response.content)\n",
|
59 |
-
" return pdb_path\n",
|
60 |
-
" else:\n",
|
61 |
-
" return None\n",
|
62 |
-
"\n",
|
63 |
-
"def process_pdb(pdb_id, segment):\n",
|
64 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
65 |
-
" if not pdb_path:\n",
|
66 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
67 |
-
" \n",
|
68 |
-
" parser = PDBParser(QUIET=1)\n",
|
69 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
70 |
-
" \n",
|
71 |
-
" try:\n",
|
72 |
-
" chain = structure[0][segment]\n",
|
73 |
-
" except KeyError:\n",
|
74 |
-
" return \"Invalid Chain ID\", None, None\n",
|
75 |
-
" \n",
|
76 |
-
" # Comprehensive amino acid mapping\n",
|
77 |
-
" aa_dict = {\n",
|
78 |
-
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
79 |
-
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
80 |
-
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
81 |
-
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
82 |
-
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
83 |
-
" }\n",
|
84 |
-
" \n",
|
85 |
-
" # Exclude non-amino acid residues\n",
|
86 |
-
" sequence = [\n",
|
87 |
-
" residue for residue in chain \n",
|
88 |
-
" if residue.get_resname().strip() in aa_dict\n",
|
89 |
-
" ]\n",
|
90 |
-
" \n",
|
91 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
92 |
-
" result_str = \"\\n\".join(\n",
|
93 |
-
" f\"{aa_dict[res.get_resname()]} {res.id[1]} {score:.2f}\" \n",
|
94 |
-
" for res, score in zip(sequence, random_scores)\n",
|
95 |
-
" )\n",
|
96 |
-
" \n",
|
97 |
-
" # Save the predictions to a file\n",
|
98 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
99 |
-
" with open(prediction_file, \"w\") as f:\n",
|
100 |
-
" f.write(result_str)\n",
|
101 |
-
" \n",
|
102 |
-
" return result_str, molecule(pdb_path, random_scores, segment), prediction_file\n",
|
103 |
-
"\n",
|
104 |
-
"def molecule(input_pdb, scores=None, segment='A'):\n",
|
105 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
106 |
-
" \n",
|
107 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
108 |
-
" high_score_script = \"\"\n",
|
109 |
-
" if scores is not None:\n",
|
110 |
-
" high_score_script = \"\"\"\n",
|
111 |
-
" // Reset all styles first\n",
|
112 |
-
" viewer.getModel(0).setStyle({}, {});\n",
|
113 |
-
" \n",
|
114 |
-
" // Show only the selected chain\n",
|
115 |
-
" viewer.getModel(0).setStyle(\n",
|
116 |
-
" {\"chain\": \"%s\"}, \n",
|
117 |
-
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
118 |
-
" );\n",
|
119 |
-
" \n",
|
120 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
121 |
-
" let highScoreResidues = [%s];\n",
|
122 |
-
" viewer.getModel(0).setStyle(\n",
|
123 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
124 |
-
" {\"stick\": {\"color\": \"red\"}}\n",
|
125 |
-
" );\n",
|
126 |
-
" \"\"\" % (segment, \n",
|
127 |
-
" \", \".join(str(i+1) for i, score in enumerate(scores) if score > 0.8),\n",
|
128 |
-
" segment)\n",
|
129 |
-
" \n",
|
130 |
-
" html_content = f\"\"\"\n",
|
131 |
-
" <!DOCTYPE html>\n",
|
132 |
-
" <html>\n",
|
133 |
-
" <head> \n",
|
134 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
135 |
-
" <style>\n",
|
136 |
-
" .mol-container {{\n",
|
137 |
-
" width: 100%;\n",
|
138 |
-
" height: 700px;\n",
|
139 |
-
" position: relative;\n",
|
140 |
-
" }}\n",
|
141 |
-
" </style>\n",
|
142 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
143 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
144 |
-
" </head>\n",
|
145 |
-
" <body>\n",
|
146 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
147 |
-
" <script>\n",
|
148 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
149 |
-
" $(document).ready(function () {{\n",
|
150 |
-
" let element = $(\"#container\");\n",
|
151 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
152 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
153 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
154 |
-
" \n",
|
155 |
-
" // Reset all styles and show only selected chain\n",
|
156 |
-
" viewer.getModel(0).setStyle(\n",
|
157 |
-
" {{\"chain\": \"{segment}\"}}, \n",
|
158 |
-
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
159 |
-
" );\n",
|
160 |
-
" \n",
|
161 |
-
" {high_score_script}\n",
|
162 |
-
" \n",
|
163 |
-
" viewer.zoomTo();\n",
|
164 |
-
" viewer.render();\n",
|
165 |
-
" viewer.zoom(0.8, 2000);\n",
|
166 |
-
" }});\n",
|
167 |
-
" </script>\n",
|
168 |
-
" </body>\n",
|
169 |
-
" </html>\n",
|
170 |
-
" \"\"\"\n",
|
171 |
-
" \n",
|
172 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
173 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
174 |
-
"\n",
|
175 |
-
"reps = [\n",
|
176 |
-
" {\n",
|
177 |
-
" \"model\": 0,\n",
|
178 |
-
" \"style\": \"cartoon\",\n",
|
179 |
-
" \"color\": \"whiteCarbon\",\n",
|
180 |
-
" \"residue_range\": \"\",\n",
|
181 |
-
" \"around\": 0,\n",
|
182 |
-
" \"byres\": False,\n",
|
183 |
-
" }\n",
|
184 |
-
" ]\n",
|
185 |
-
"# Gradio UI\n",
|
186 |
-
"with gr.Blocks() as demo:\n",
|
187 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
188 |
-
" with gr.Row():\n",
|
189 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
190 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
191 |
-
"\n",
|
192 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
193 |
-
"\n",
|
194 |
-
" with gr.Row():\n",
|
195 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
196 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
197 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
198 |
-
"\n",
|
199 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
200 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
201 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
202 |
-
" \n",
|
203 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
204 |
-
" \n",
|
205 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
206 |
-
" \n",
|
207 |
-
" gr.Markdown(\"## Examples\")\n",
|
208 |
-
" gr.Examples(\n",
|
209 |
-
" examples=[\n",
|
210 |
-
" [\"2IWI\", \"A\"],\n",
|
211 |
-
" [\"7RPZ\", \"B\"],\n",
|
212 |
-
" [\"3TJN\", \"C\"]\n",
|
213 |
-
" ],\n",
|
214 |
-
" inputs=[pdb_input, segment_input],\n",
|
215 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
216 |
-
" )\n",
|
217 |
-
"\n",
|
218 |
-
"demo.launch()"
|
219 |
-
]
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"cell_type": "code",
|
223 |
-
"execution_count": 6,
|
224 |
-
"id": "28f8f28c-48d3-4e35-9766-3de9882179b5",
|
225 |
-
"metadata": {},
|
226 |
-
"outputs": [
|
227 |
-
{
|
228 |
-
"name": "stdout",
|
229 |
-
"output_type": "stream",
|
230 |
-
"text": [
|
231 |
-
"* Running on local URL: http://127.0.0.1:7864\n",
|
232 |
-
"\n",
|
233 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
234 |
-
]
|
235 |
-
},
|
236 |
-
{
|
237 |
-
"data": {
|
238 |
-
"text/html": [
|
239 |
-
"<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
240 |
-
],
|
241 |
-
"text/plain": [
|
242 |
-
"<IPython.core.display.HTML object>"
|
243 |
-
]
|
244 |
-
},
|
245 |
-
"metadata": {},
|
246 |
-
"output_type": "display_data"
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"data": {
|
250 |
-
"text/plain": []
|
251 |
-
},
|
252 |
-
"execution_count": 6,
|
253 |
-
"metadata": {},
|
254 |
-
"output_type": "execute_result"
|
255 |
-
}
|
256 |
-
],
|
257 |
-
"source": [
|
258 |
-
"import gradio as gr\n",
|
259 |
-
"import requests\n",
|
260 |
-
"from Bio.PDB import PDBParser\n",
|
261 |
-
"import numpy as np\n",
|
262 |
-
"import os\n",
|
263 |
-
"from gradio_molecule3d import Molecule3D\n",
|
264 |
-
"\n",
|
265 |
-
"def read_mol(pdb_path):\n",
|
266 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
267 |
-
" with open(pdb_path, 'r') as f:\n",
|
268 |
-
" return f.read()\n",
|
269 |
-
"\n",
|
270 |
-
"def fetch_pdb(pdb_id):\n",
|
271 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
272 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
273 |
-
" response = requests.get(pdb_url)\n",
|
274 |
-
" if response.status_code == 200:\n",
|
275 |
-
" with open(pdb_path, 'wb') as f:\n",
|
276 |
-
" f.write(response.content)\n",
|
277 |
-
" return pdb_path\n",
|
278 |
-
" else:\n",
|
279 |
-
" return None\n",
|
280 |
-
"\n",
|
281 |
-
"def process_pdb(pdb_id, segment):\n",
|
282 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
283 |
-
" if not pdb_path:\n",
|
284 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
285 |
-
" \n",
|
286 |
-
" parser = PDBParser(QUIET=1)\n",
|
287 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
288 |
-
" \n",
|
289 |
-
" try:\n",
|
290 |
-
" chain = structure[0][segment]\n",
|
291 |
-
" except KeyError:\n",
|
292 |
-
" return \"Invalid Chain ID\", None, None\n",
|
293 |
-
" \n",
|
294 |
-
" # Comprehensive amino acid mapping\n",
|
295 |
-
" aa_dict = {\n",
|
296 |
-
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
297 |
-
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
298 |
-
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
299 |
-
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
300 |
-
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
301 |
-
" }\n",
|
302 |
-
" \n",
|
303 |
-
" # Exclude non-amino acid residues\n",
|
304 |
-
" sequence = [\n",
|
305 |
-
" residue for residue in chain \n",
|
306 |
-
" if residue.get_resname().strip() in aa_dict\n",
|
307 |
-
" ]\n",
|
308 |
-
" \n",
|
309 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
310 |
-
" result_str = \"\\n\".join(\n",
|
311 |
-
" f\"{aa_dict[res.get_resname()]} {res.id[1]} {score:.2f}\" \n",
|
312 |
-
" for res, score in zip(sequence, random_scores)\n",
|
313 |
-
" )\n",
|
314 |
-
" \n",
|
315 |
-
" # Save the predictions to a file\n",
|
316 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
317 |
-
" with open(prediction_file, \"w\") as f:\n",
|
318 |
-
" f.write(result_str)\n",
|
319 |
-
" \n",
|
320 |
-
" return result_str, molecule(pdb_path, random_scores, segment), prediction_file\n",
|
321 |
-
"\n",
|
322 |
-
"def molecule(input_pdb, scores=None, segment='A'):\n",
|
323 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
324 |
-
" \n",
|
325 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
326 |
-
" high_score_script = \"\"\n",
|
327 |
-
" if scores is not None:\n",
|
328 |
-
" high_score_script = \"\"\"\n",
|
329 |
-
" // Reset all styles first\n",
|
330 |
-
" viewer.getModel(0).setStyle({}, {});\n",
|
331 |
-
" \n",
|
332 |
-
" // Show only the selected chain\n",
|
333 |
-
" viewer.getModel(0).setStyle(\n",
|
334 |
-
" {\"chain\": \"%s\"}, \n",
|
335 |
-
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
336 |
-
" );\n",
|
337 |
-
" \n",
|
338 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
339 |
-
" let highScoreResidues = [%s];\n",
|
340 |
-
" viewer.getModel(0).setStyle(\n",
|
341 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
342 |
-
" {\"stick\": {\"color\": \"red\"}}\n",
|
343 |
-
" );\n",
|
344 |
-
" \"\"\" % (segment, \n",
|
345 |
-
" \", \".join(str(i+1) for i, score in enumerate(scores) if score > 0.8),\n",
|
346 |
-
" segment)\n",
|
347 |
-
" \n",
|
348 |
-
" html_content = f\"\"\"\n",
|
349 |
-
" <!DOCTYPE html>\n",
|
350 |
-
" <html>\n",
|
351 |
-
" <head> \n",
|
352 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
353 |
-
" <style>\n",
|
354 |
-
" .mol-container {{\n",
|
355 |
-
" width: 100%;\n",
|
356 |
-
" height: 700px;\n",
|
357 |
-
" position: relative;\n",
|
358 |
-
" }}\n",
|
359 |
-
" </style>\n",
|
360 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
361 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
362 |
-
" </head>\n",
|
363 |
-
" <body>\n",
|
364 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
365 |
-
" <script>\n",
|
366 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
367 |
-
" $(document).ready(function () {{\n",
|
368 |
-
" let element = $(\"#container\");\n",
|
369 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
370 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
371 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
372 |
-
" \n",
|
373 |
-
" // Reset all styles and show only selected chain\n",
|
374 |
-
" viewer.getModel(0).setStyle(\n",
|
375 |
-
" {{\"chain\": \"{segment}\"}}, \n",
|
376 |
-
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
377 |
-
" );\n",
|
378 |
-
" \n",
|
379 |
-
" {high_score_script}\n",
|
380 |
-
" \n",
|
381 |
-
" // Add hover functionality\n",
|
382 |
-
" viewer.setHoverable(\n",
|
383 |
-
" {{}}, \n",
|
384 |
-
" true, \n",
|
385 |
-
" function(atom, viewer, event, container) {{\n",
|
386 |
-
" if (!atom.label) {{\n",
|
387 |
-
" atom.label = viewer.addLabel(\n",
|
388 |
-
" atom.resn + \":\" + atom.atom, \n",
|
389 |
-
" {{\n",
|
390 |
-
" position: atom, \n",
|
391 |
-
" backgroundColor: 'mintcream', \n",
|
392 |
-
" fontColor: 'black',\n",
|
393 |
-
" fontSize: 12,\n",
|
394 |
-
" padding: 2\n",
|
395 |
-
" }}\n",
|
396 |
-
" );\n",
|
397 |
-
" }}\n",
|
398 |
-
" }},\n",
|
399 |
-
" function(atom, viewer) {{\n",
|
400 |
-
" if (atom.label) {{\n",
|
401 |
-
" viewer.removeLabel(atom.label);\n",
|
402 |
-
" delete atom.label;\n",
|
403 |
-
" }}\n",
|
404 |
-
" }}\n",
|
405 |
-
" );\n",
|
406 |
-
" \n",
|
407 |
-
" viewer.zoomTo();\n",
|
408 |
-
" viewer.render();\n",
|
409 |
-
" viewer.zoom(0.8, 2000);\n",
|
410 |
-
" }});\n",
|
411 |
-
" </script>\n",
|
412 |
-
" </body>\n",
|
413 |
-
" </html>\n",
|
414 |
-
" \"\"\"\n",
|
415 |
-
" \n",
|
416 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
417 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
418 |
-
"\n",
|
419 |
-
"reps = [\n",
|
420 |
-
" {\n",
|
421 |
-
" \"model\": 0,\n",
|
422 |
-
" \"style\": \"cartoon\",\n",
|
423 |
-
" \"color\": \"whiteCarbon\",\n",
|
424 |
-
" \"residue_range\": \"\",\n",
|
425 |
-
" \"around\": 0,\n",
|
426 |
-
" \"byres\": False,\n",
|
427 |
-
" }\n",
|
428 |
-
" ]\n",
|
429 |
-
"\n",
|
430 |
-
"# Gradio UI\n",
|
431 |
-
"with gr.Blocks() as demo:\n",
|
432 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
433 |
-
" with gr.Row():\n",
|
434 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
435 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
436 |
-
"\n",
|
437 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
438 |
-
"\n",
|
439 |
-
" with gr.Row():\n",
|
440 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
441 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
442 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
443 |
-
"\n",
|
444 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
445 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
446 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
447 |
-
" \n",
|
448 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
449 |
-
" \n",
|
450 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
451 |
-
" \n",
|
452 |
-
" gr.Markdown(\"## Examples\")\n",
|
453 |
-
" gr.Examples(\n",
|
454 |
-
" examples=[\n",
|
455 |
-
" [\"2IWI\", \"A\"],\n",
|
456 |
-
" [\"7RPZ\", \"B\"],\n",
|
457 |
-
" [\"3TJN\", \"C\"]\n",
|
458 |
-
" ],\n",
|
459 |
-
" inputs=[pdb_input, segment_input],\n",
|
460 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
461 |
-
" )\n",
|
462 |
-
"\n",
|
463 |
-
"demo.launch()"
|
464 |
-
]
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"cell_type": "code",
|
468 |
-
"execution_count": null,
|
469 |
-
"id": "517a2fe7-419f-4d0b-a9ed-62a22c1c1284",
|
470 |
-
"metadata": {},
|
471 |
-
"outputs": [],
|
472 |
-
"source": []
|
473 |
-
},
|
474 |
-
{
|
475 |
-
"cell_type": "code",
|
476 |
-
"execution_count": 1,
|
477 |
-
"id": "d62be1b5-762e-4b69-aed4-e4ba2a44482f",
|
478 |
-
"metadata": {},
|
479 |
-
"outputs": [
|
480 |
-
{
|
481 |
-
"name": "stdout",
|
482 |
-
"output_type": "stream",
|
483 |
-
"text": [
|
484 |
-
"* Running on local URL: http://127.0.0.1:7860\n",
|
485 |
-
"\n",
|
486 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
487 |
-
]
|
488 |
-
},
|
489 |
-
{
|
490 |
-
"data": {
|
491 |
-
"text/html": [
|
492 |
-
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
493 |
-
],
|
494 |
-
"text/plain": [
|
495 |
-
"<IPython.core.display.HTML object>"
|
496 |
-
]
|
497 |
-
},
|
498 |
-
"metadata": {},
|
499 |
-
"output_type": "display_data"
|
500 |
-
},
|
501 |
-
{
|
502 |
-
"data": {
|
503 |
-
"text/plain": []
|
504 |
-
},
|
505 |
-
"execution_count": 1,
|
506 |
-
"metadata": {},
|
507 |
-
"output_type": "execute_result"
|
508 |
-
}
|
509 |
-
],
|
510 |
-
"source": [
|
511 |
-
"import gradio as gr\n",
|
512 |
-
"import requests\n",
|
513 |
-
"from Bio.PDB import PDBParser\n",
|
514 |
-
"import numpy as np\n",
|
515 |
-
"import os\n",
|
516 |
-
"from gradio_molecule3d import Molecule3D\n",
|
517 |
-
"\n",
|
518 |
-
"def read_mol(pdb_path):\n",
|
519 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
520 |
-
" with open(pdb_path, 'r') as f:\n",
|
521 |
-
" return f.read()\n",
|
522 |
-
"\n",
|
523 |
-
"def fetch_pdb(pdb_id):\n",
|
524 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
525 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
526 |
-
" response = requests.get(pdb_url)\n",
|
527 |
-
" if response.status_code == 200:\n",
|
528 |
-
" with open(pdb_path, 'wb') as f:\n",
|
529 |
-
" f.write(response.content)\n",
|
530 |
-
" return pdb_path\n",
|
531 |
-
" else:\n",
|
532 |
-
" return None\n",
|
533 |
-
"\n",
|
534 |
-
"def process_pdb(pdb_id, segment):\n",
|
535 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
536 |
-
" if not pdb_path:\n",
|
537 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
538 |
-
" \n",
|
539 |
-
" parser = PDBParser(QUIET=1)\n",
|
540 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
541 |
-
" \n",
|
542 |
-
" try:\n",
|
543 |
-
" chain = structure[0][segment]\n",
|
544 |
-
" except KeyError:\n",
|
545 |
-
" return \"Invalid Chain ID\", None, None\n",
|
546 |
-
" \n",
|
547 |
-
" # Comprehensive amino acid mapping\n",
|
548 |
-
" aa_dict = {\n",
|
549 |
-
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
550 |
-
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
551 |
-
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
552 |
-
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
553 |
-
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
554 |
-
" }\n",
|
555 |
-
" \n",
|
556 |
-
" # Exclude non-amino acid residues\n",
|
557 |
-
" sequence = [\n",
|
558 |
-
" residue for residue in chain \n",
|
559 |
-
" if residue.get_resname().strip() in aa_dict\n",
|
560 |
-
" ]\n",
|
561 |
-
" \n",
|
562 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
563 |
-
" result_str = \"\\n\".join(\n",
|
564 |
-
" f\"{aa_dict[res.get_resname()]} {res.id[1]} {score:.2f}\" \n",
|
565 |
-
" for res, score in zip(sequence, random_scores)\n",
|
566 |
-
" )\n",
|
567 |
-
" \n",
|
568 |
-
" # Save the predictions to a file\n",
|
569 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
570 |
-
" with open(prediction_file, \"w\") as f:\n",
|
571 |
-
" f.write(result_str)\n",
|
572 |
-
" \n",
|
573 |
-
" return result_str, molecule(pdb_path, random_scores, segment), prediction_file\n",
|
574 |
-
"\n",
|
575 |
-
"def molecule(input_pdb, scores=None, segment='A'):\n",
|
576 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
577 |
-
" \n",
|
578 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
579 |
-
" high_score_script = \"\"\n",
|
580 |
-
" if scores is not None:\n",
|
581 |
-
" high_score_script = \"\"\"\n",
|
582 |
-
" // Reset all styles first\n",
|
583 |
-
" viewer.getModel(0).setStyle({}, {});\n",
|
584 |
-
" \n",
|
585 |
-
" // Show only the selected chain\n",
|
586 |
-
" viewer.getModel(0).setStyle(\n",
|
587 |
-
" {\"chain\": \"%s\"}, \n",
|
588 |
-
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
589 |
-
" );\n",
|
590 |
-
" \n",
|
591 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
592 |
-
" let highScoreResidues = [%s];\n",
|
593 |
-
" viewer.getModel(0).setStyle(\n",
|
594 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
595 |
-
" {\"stick\": {\"color\": \"red\"}}\n",
|
596 |
-
" );\n",
|
597 |
-
"\n",
|
598 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
599 |
-
" let highScoreResidues2 = [%s];\n",
|
600 |
-
" viewer.getModel(0).setStyle(\n",
|
601 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues2}, \n",
|
602 |
-
" {\"stick\": {\"color\": \"orange\"}}\n",
|
603 |
-
" );\n",
|
604 |
-
" \"\"\" % (segment, \n",
|
605 |
-
" \", \".join(str(i+1) for i, score in enumerate(scores) if score > 0.8),\n",
|
606 |
-
" segment,\n",
|
607 |
-
" \", \".join(str(i+1) for i, score in enumerate(scores) if (score > 0.5) and (score < 0.8)),\n",
|
608 |
-
" segment)\n",
|
609 |
-
" \n",
|
610 |
-
" html_content = f\"\"\"\n",
|
611 |
-
" <!DOCTYPE html>\n",
|
612 |
-
" <html>\n",
|
613 |
-
" <head> \n",
|
614 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
615 |
-
" <style>\n",
|
616 |
-
" .mol-container {{\n",
|
617 |
-
" width: 100%;\n",
|
618 |
-
" height: 700px;\n",
|
619 |
-
" position: relative;\n",
|
620 |
-
" }}\n",
|
621 |
-
" </style>\n",
|
622 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
623 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
624 |
-
" </head>\n",
|
625 |
-
" <body>\n",
|
626 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
627 |
-
" <script>\n",
|
628 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
629 |
-
" $(document).ready(function () {{\n",
|
630 |
-
" let element = $(\"#container\");\n",
|
631 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
632 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
633 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
634 |
-
" \n",
|
635 |
-
" // Reset all styles and show only selected chain\n",
|
636 |
-
" viewer.getModel(0).setStyle(\n",
|
637 |
-
" {{\"chain\": \"{segment}\"}}, \n",
|
638 |
-
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
639 |
-
" );\n",
|
640 |
-
" \n",
|
641 |
-
" {high_score_script}\n",
|
642 |
-
" \n",
|
643 |
-
" // Add hover functionality\n",
|
644 |
-
" viewer.setHoverable(\n",
|
645 |
-
" {{}}, \n",
|
646 |
-
" true, \n",
|
647 |
-
" function(atom, viewer, event, container) {{\n",
|
648 |
-
" if (!atom.label) {{\n",
|
649 |
-
" atom.label = viewer.addLabel(\n",
|
650 |
-
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
651 |
-
" {{\n",
|
652 |
-
" position: atom, \n",
|
653 |
-
" backgroundColor: 'mintcream', \n",
|
654 |
-
" fontColor: 'black',\n",
|
655 |
-
" fontSize: 12,\n",
|
656 |
-
" padding: 2\n",
|
657 |
-
" }}\n",
|
658 |
-
" );\n",
|
659 |
-
" }}\n",
|
660 |
-
" }},\n",
|
661 |
-
" function(atom, viewer) {{\n",
|
662 |
-
" if (atom.label) {{\n",
|
663 |
-
" viewer.removeLabel(atom.label);\n",
|
664 |
-
" delete atom.label;\n",
|
665 |
-
" }}\n",
|
666 |
-
" }}\n",
|
667 |
-
" );\n",
|
668 |
-
" \n",
|
669 |
-
" viewer.zoomTo();\n",
|
670 |
-
" viewer.render();\n",
|
671 |
-
" viewer.zoom(0.8, 2000);\n",
|
672 |
-
" }});\n",
|
673 |
-
" </script>\n",
|
674 |
-
" </body>\n",
|
675 |
-
" </html>\n",
|
676 |
-
" \"\"\"\n",
|
677 |
-
" \n",
|
678 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
679 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
680 |
-
"\n",
|
681 |
-
"reps = [\n",
|
682 |
-
" {\n",
|
683 |
-
" \"model\": 0,\n",
|
684 |
-
" \"style\": \"cartoon\",\n",
|
685 |
-
" \"color\": \"whiteCarbon\",\n",
|
686 |
-
" \"residue_range\": \"\",\n",
|
687 |
-
" \"around\": 0,\n",
|
688 |
-
" \"byres\": False,\n",
|
689 |
-
" }\n",
|
690 |
-
" ]\n",
|
691 |
-
"\n",
|
692 |
-
"# Gradio UI\n",
|
693 |
-
"with gr.Blocks() as demo:\n",
|
694 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
695 |
-
" with gr.Row():\n",
|
696 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
697 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
698 |
-
"\n",
|
699 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
700 |
-
"\n",
|
701 |
-
" with gr.Row():\n",
|
702 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
703 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
704 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
705 |
-
"\n",
|
706 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
707 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
708 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
709 |
-
" \n",
|
710 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
711 |
-
" \n",
|
712 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
713 |
-
" \n",
|
714 |
-
" gr.Markdown(\"## Examples\")\n",
|
715 |
-
" gr.Examples(\n",
|
716 |
-
" examples=[\n",
|
717 |
-
" [\"2IWI\", \"A\"],\n",
|
718 |
-
" [\"7RPZ\", \"B\"],\n",
|
719 |
-
" [\"3TJN\", \"C\"]\n",
|
720 |
-
" ],\n",
|
721 |
-
" inputs=[pdb_input, segment_input],\n",
|
722 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
723 |
-
" )\n",
|
724 |
-
"\n",
|
725 |
-
"demo.launch()"
|
726 |
-
]
|
727 |
-
},
|
728 |
-
{
|
729 |
-
"cell_type": "code",
|
730 |
-
"execution_count": 6,
|
731 |
-
"id": "30f35243-852f-4771-9a4b-5cdd198552b5",
|
732 |
-
"metadata": {},
|
733 |
-
"outputs": [
|
734 |
-
{
|
735 |
-
"name": "stdout",
|
736 |
-
"output_type": "stream",
|
737 |
-
"text": [
|
738 |
-
"* Running on local URL: http://127.0.0.1:7865\n",
|
739 |
-
"\n",
|
740 |
-
"To create a public link, set `share=True` in `launch()`.\n"
|
741 |
-
]
|
742 |
-
},
|
743 |
-
{
|
744 |
-
"data": {
|
745 |
-
"text/html": [
|
746 |
-
"<div><iframe src=\"http://127.0.0.1:7865/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
747 |
-
],
|
748 |
-
"text/plain": [
|
749 |
-
"<IPython.core.display.HTML object>"
|
750 |
-
]
|
751 |
-
},
|
752 |
-
"metadata": {},
|
753 |
-
"output_type": "display_data"
|
754 |
-
},
|
755 |
-
{
|
756 |
-
"data": {
|
757 |
-
"text/plain": []
|
758 |
-
},
|
759 |
-
"execution_count": 6,
|
760 |
-
"metadata": {},
|
761 |
-
"output_type": "execute_result"
|
762 |
-
}
|
763 |
-
],
|
764 |
-
"source": [
|
765 |
-
"import gradio as gr\n",
|
766 |
-
"import requests\n",
|
767 |
-
"from Bio.PDB import PDBParser\n",
|
768 |
-
"import numpy as np\n",
|
769 |
-
"import os\n",
|
770 |
-
"from gradio_molecule3d import Molecule3D\n",
|
771 |
-
"\n",
|
772 |
-
"def read_mol(pdb_path):\n",
|
773 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
774 |
-
" with open(pdb_path, 'r') as f:\n",
|
775 |
-
" return f.read()\n",
|
776 |
-
"\n",
|
777 |
-
"def fetch_pdb(pdb_id):\n",
|
778 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
779 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
780 |
-
" response = requests.get(pdb_url)\n",
|
781 |
-
" if response.status_code == 200:\n",
|
782 |
-
" with open(pdb_path, 'wb') as f:\n",
|
783 |
-
" f.write(response.content)\n",
|
784 |
-
" return pdb_path\n",
|
785 |
-
" else:\n",
|
786 |
-
" return None\n",
|
787 |
-
"\n",
|
788 |
-
"def process_pdb(pdb_id, segment):\n",
|
789 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
790 |
-
" if not pdb_path:\n",
|
791 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
792 |
-
" \n",
|
793 |
-
" parser = PDBParser(QUIET=1)\n",
|
794 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
795 |
-
" \n",
|
796 |
-
" try:\n",
|
797 |
-
" chain = structure[0][segment]\n",
|
798 |
-
" except KeyError:\n",
|
799 |
-
" return \"Invalid Chain ID\", None, None\n",
|
800 |
-
" \n",
|
801 |
-
" # Comprehensive amino acid mapping\n",
|
802 |
-
" aa_dict = {\n",
|
803 |
-
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
804 |
-
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
805 |
-
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
806 |
-
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
807 |
-
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
808 |
-
" }\n",
|
809 |
-
" \n",
|
810 |
-
" # Exclude non-amino acid residues and create a list of (resi, score) pairs\n",
|
811 |
-
" sequence = [\n",
|
812 |
-
" (res.id[1], res) for res in chain\n",
|
813 |
-
" if res.get_resname().strip() in aa_dict\n",
|
814 |
-
" ]\n",
|
815 |
-
"\n",
|
816 |
-
" random_scores = np.random.rand(len(sequence))\n",
|
817 |
-
" \n",
|
818 |
-
" # Zip residues with scores to track the residue ID and score\n",
|
819 |
-
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence, random_scores)]\n",
|
820 |
-
" \n",
|
821 |
-
" result_str = \"\\n\".join(\n",
|
822 |
-
" f\"{aa_dict[chain[resi].get_resname()]} {resi} {score:.2f}\"\n",
|
823 |
-
" for resi, score in residue_scores\n",
|
824 |
-
" )\n",
|
825 |
-
" \n",
|
826 |
-
" # Save the predictions to a file\n",
|
827 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
828 |
-
" with open(prediction_file, \"w\") as f:\n",
|
829 |
-
" f.write(result_str)\n",
|
830 |
-
" \n",
|
831 |
-
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
832 |
-
"\n",
|
833 |
-
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
834 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
835 |
-
" \n",
|
836 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
837 |
-
" high_score_script = \"\"\n",
|
838 |
-
" if residue_scores is not None:\n",
|
839 |
-
" # Sort residues based on their scores\n",
|
840 |
-
" high_score_residues = [resi for resi, score in residue_scores if score > 0.9]\n",
|
841 |
-
" mid_score_residues = [resi for resi, score in residue_scores if 0.8 < score <= 0.9]\n",
|
842 |
-
" \n",
|
843 |
-
" high_score_script = \"\"\"\n",
|
844 |
-
" // Reset all styles first\n",
|
845 |
-
" viewer.getModel(0).setStyle({}, {});\n",
|
846 |
-
" \n",
|
847 |
-
" // Show only the selected chain\n",
|
848 |
-
" viewer.getModel(0).setStyle(\n",
|
849 |
-
" {\"chain\": \"%s\"}, \n",
|
850 |
-
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
851 |
-
" );\n",
|
852 |
-
" \n",
|
853 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
854 |
-
" let highScoreResidues = [%s];\n",
|
855 |
-
" viewer.getModel(0).setStyle(\n",
|
856 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
857 |
-
" {\"stick\": {\"color\": \"red\"}}\n",
|
858 |
-
" );\n",
|
859 |
-
"\n",
|
860 |
-
" // Highlight medium-scoring residues only for the selected chain\n",
|
861 |
-
" let midScoreResidues = [%s];\n",
|
862 |
-
" viewer.getModel(0).setStyle(\n",
|
863 |
-
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
864 |
-
" {\"stick\": {\"color\": \"orange\"}}\n",
|
865 |
-
" );\n",
|
866 |
-
" \"\"\" % (segment, \n",
|
867 |
-
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
868 |
-
" segment,\n",
|
869 |
-
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
870 |
-
" segment)\n",
|
871 |
-
" \n",
|
872 |
-
" html_content = f\"\"\"\n",
|
873 |
-
" <!DOCTYPE html>\n",
|
874 |
-
" <html>\n",
|
875 |
-
" <head> \n",
|
876 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
877 |
-
" <style>\n",
|
878 |
-
" .mol-container {{\n",
|
879 |
-
" width: 100%;\n",
|
880 |
-
" height: 700px;\n",
|
881 |
-
" position: relative;\n",
|
882 |
-
" }}\n",
|
883 |
-
" </style>\n",
|
884 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
885 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
886 |
-
" </head>\n",
|
887 |
-
" <body>\n",
|
888 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
889 |
-
" <script>\n",
|
890 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
891 |
-
" $(document).ready(function () {{\n",
|
892 |
-
" let element = $(\"#container\");\n",
|
893 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
894 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
895 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
896 |
-
" \n",
|
897 |
-
" // Reset all styles and show only selected chain\n",
|
898 |
-
" viewer.getModel(0).setStyle(\n",
|
899 |
-
" {{\"chain\": \"{segment}\"}}, \n",
|
900 |
-
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
901 |
-
" );\n",
|
902 |
-
" \n",
|
903 |
-
" {high_score_script}\n",
|
904 |
-
" \n",
|
905 |
-
" // Add hover functionality\n",
|
906 |
-
" viewer.setHoverable(\n",
|
907 |
-
" {{}}, \n",
|
908 |
-
" true, \n",
|
909 |
-
" function(atom, viewer, event, container) {{\n",
|
910 |
-
" if (!atom.label) {{\n",
|
911 |
-
" atom.label = viewer.addLabel(\n",
|
912 |
-
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
913 |
-
" {{\n",
|
914 |
-
" position: atom, \n",
|
915 |
-
" backgroundColor: 'mintcream', \n",
|
916 |
-
" fontColor: 'black',\n",
|
917 |
-
" fontSize: 12,\n",
|
918 |
-
" padding: 2\n",
|
919 |
-
" }}\n",
|
920 |
-
" );\n",
|
921 |
-
" }}\n",
|
922 |
-
" }},\n",
|
923 |
-
" function(atom, viewer) {{\n",
|
924 |
-
" if (atom.label) {{\n",
|
925 |
-
" viewer.removeLabel(atom.label);\n",
|
926 |
-
" delete atom.label;\n",
|
927 |
-
" }}\n",
|
928 |
-
" }}\n",
|
929 |
-
" );\n",
|
930 |
-
" \n",
|
931 |
-
" viewer.zoomTo();\n",
|
932 |
-
" viewer.render();\n",
|
933 |
-
" viewer.zoom(0.8, 2000);\n",
|
934 |
-
" }});\n",
|
935 |
-
" </script>\n",
|
936 |
-
" </body>\n",
|
937 |
-
" </html>\n",
|
938 |
-
" \"\"\"\n",
|
939 |
-
" \n",
|
940 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
941 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
942 |
-
"\n",
|
943 |
-
"reps = [\n",
|
944 |
-
" {\n",
|
945 |
-
" \"model\": 0,\n",
|
946 |
-
" \"style\": \"cartoon\",\n",
|
947 |
-
" \"color\": \"whiteCarbon\",\n",
|
948 |
-
" \"residue_range\": \"\",\n",
|
949 |
-
" \"around\": 0,\n",
|
950 |
-
" \"byres\": False,\n",
|
951 |
-
" }\n",
|
952 |
-
" ]\n",
|
953 |
-
"\n",
|
954 |
-
"# Gradio UI\n",
|
955 |
-
"with gr.Blocks() as demo:\n",
|
956 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
957 |
-
" with gr.Row():\n",
|
958 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
959 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
960 |
-
"\n",
|
961 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
962 |
-
"\n",
|
963 |
-
" with gr.Row():\n",
|
964 |
-
" #pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
965 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
966 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
967 |
-
"\n",
|
968 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
969 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
970 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
971 |
-
" \n",
|
972 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
973 |
-
" \n",
|
974 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
975 |
-
" \n",
|
976 |
-
" gr.Markdown(\"## Examples\")\n",
|
977 |
-
" gr.Examples(\n",
|
978 |
-
" examples=[\n",
|
979 |
-
" [\"7RPZ\", \"A\"],\n",
|
980 |
-
" [\"2IWI\", \"B\"],\n",
|
981 |
-
" [\"2F6V\", \"A\"]\n",
|
982 |
-
" ],\n",
|
983 |
-
" inputs=[pdb_input, segment_input],\n",
|
984 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
985 |
-
" )\n",
|
986 |
-
"\n",
|
987 |
-
"demo.launch()"
|
988 |
-
]
|
989 |
-
},
|
990 |
-
{
|
991 |
-
"cell_type": "code",
|
992 |
-
"execution_count": null,
|
993 |
-
"id": "6f17feec-0347-4f9d-acd4-ae681c3ed425",
|
994 |
-
"metadata": {},
|
995 |
-
"outputs": [],
|
996 |
-
"source": []
|
997 |
-
},
|
998 |
-
{
|
999 |
-
"cell_type": "code",
|
1000 |
-
"execution_count": null,
|
1001 |
-
"id": "63201f38-adde-4b12-a8d3-f23474d045cf",
|
1002 |
-
"metadata": {},
|
1003 |
-
"outputs": [],
|
1004 |
-
"source": []
|
1005 |
-
},
|
1006 |
-
{
|
1007 |
-
"cell_type": "code",
|
1008 |
-
"execution_count": null,
|
1009 |
-
"id": "5ccbf398-5ef2-4955-98db-99f904f8daa4",
|
1010 |
-
"metadata": {},
|
1011 |
-
"outputs": [],
|
1012 |
-
"source": []
|
1013 |
-
},
|
1014 |
-
{
|
1015 |
-
"cell_type": "code",
|
1016 |
-
"execution_count": null,
|
1017 |
-
"id": "4c61bac4-4f2e-4f4a-aa1f-30dca209747c",
|
1018 |
-
"metadata": {},
|
1019 |
-
"outputs": [],
|
1020 |
-
"source": [
|
1021 |
-
"import gradio as gr\n",
|
1022 |
-
"import requests\n",
|
1023 |
-
"from Bio.PDB import PDBParser\n",
|
1024 |
-
"import numpy as np\n",
|
1025 |
-
"import os\n",
|
1026 |
-
"from gradio_molecule3d import Molecule3D\n",
|
1027 |
-
"\n",
|
1028 |
-
"\n",
|
1029 |
-
"from model_loader import load_model\n",
|
1030 |
-
"\n",
|
1031 |
-
"import torch\n",
|
1032 |
-
"import torch.nn as nn\n",
|
1033 |
-
"import torch.nn.functional as F\n",
|
1034 |
-
"from torch.utils.data import DataLoader\n",
|
1035 |
-
"\n",
|
1036 |
-
"import re\n",
|
1037 |
-
"import pandas as pd\n",
|
1038 |
-
"import copy\n",
|
1039 |
-
"\n",
|
1040 |
-
"import transformers, datasets\n",
|
1041 |
-
"from transformers import AutoTokenizer\n",
|
1042 |
-
"from transformers import DataCollatorForTokenClassification\n",
|
1043 |
-
"\n",
|
1044 |
-
"from datasets import Dataset\n",
|
1045 |
-
"\n",
|
1046 |
-
"from scipy.special import expit\n",
|
1047 |
-
"\n",
|
1048 |
-
"# Load model and move to device\n",
|
1049 |
-
"checkpoint = 'ThorbenF/prot_t5_xl_uniref50'\n",
|
1050 |
-
"max_length = 1500\n",
|
1051 |
-
"model, tokenizer = load_model(checkpoint, max_length)\n",
|
1052 |
-
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1053 |
-
"model.to(device)\n",
|
1054 |
-
"model.eval()\n",
|
1055 |
-
"\n",
|
1056 |
-
"def normalize_scores(scores):\n",
|
1057 |
-
" min_score = np.min(scores)\n",
|
1058 |
-
" max_score = np.max(scores)\n",
|
1059 |
-
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1060 |
-
" \n",
|
1061 |
-
"def read_mol(pdb_path):\n",
|
1062 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
1063 |
-
" with open(pdb_path, 'r') as f:\n",
|
1064 |
-
" return f.read()\n",
|
1065 |
-
"\n",
|
1066 |
-
"def fetch_pdb(pdb_id):\n",
|
1067 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
1068 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
1069 |
-
" response = requests.get(pdb_url)\n",
|
1070 |
-
" if response.status_code == 200:\n",
|
1071 |
-
" with open(pdb_path, 'wb') as f:\n",
|
1072 |
-
" f.write(response.content)\n",
|
1073 |
-
" return pdb_path\n",
|
1074 |
-
" else:\n",
|
1075 |
-
" return None\n",
|
1076 |
-
"\n",
|
1077 |
-
"def process_pdb(pdb_id, segment):\n",
|
1078 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
1079 |
-
" if not pdb_path:\n",
|
1080 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
1081 |
-
" \n",
|
1082 |
-
" parser = PDBParser(QUIET=1)\n",
|
1083 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
1084 |
-
" \n",
|
1085 |
-
" try:\n",
|
1086 |
-
" chain = structure[0][segment]\n",
|
1087 |
-
" except KeyError:\n",
|
1088 |
-
" return \"Invalid Chain ID\", None, None\n",
|
1089 |
-
" \n",
|
1090 |
-
" \n",
|
1091 |
-
" aa_dict = {\n",
|
1092 |
-
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1093 |
-
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
1094 |
-
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
1095 |
-
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
1096 |
-
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
1097 |
-
" }\n",
|
1098 |
-
" \n",
|
1099 |
-
" # Exclude non-amino acid residues\n",
|
1100 |
-
" sequence = \"\".join(\n",
|
1101 |
-
" aa_dict[residue.get_resname().strip()] \n",
|
1102 |
-
" for residue in chain \n",
|
1103 |
-
" if residue.get_resname().strip() in aa_dict\n",
|
1104 |
-
" )\n",
|
1105 |
-
" sequence2 = [\n",
|
1106 |
-
" (res.id[1], res) for res in chain\n",
|
1107 |
-
" if res.get_resname().strip() in aa_dict\n",
|
1108 |
-
" ]\n",
|
1109 |
-
" \n",
|
1110 |
-
" # Prepare input for model prediction\n",
|
1111 |
-
" input_ids = tokenizer(\" \".join(sequence), return_tensors=\"pt\").input_ids.to(device)\n",
|
1112 |
-
" with torch.no_grad():\n",
|
1113 |
-
" outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()\n",
|
1114 |
-
"\n",
|
1115 |
-
" # Calculate scores and normalize them\n",
|
1116 |
-
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1117 |
-
" normalized_scores = normalize_scores(scores)\n",
|
1118 |
-
"\n",
|
1119 |
-
" # Zip residues with scores to track the residue ID and score\n",
|
1120 |
-
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]\n",
|
1121 |
-
" \n",
|
1122 |
-
" result_str = \"\\n\".join([\n",
|
1123 |
-
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1124 |
-
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1125 |
-
" ])\n",
|
1126 |
-
" \n",
|
1127 |
-
" # Save the predictions to a file\n",
|
1128 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1129 |
-
" with open(prediction_file, \"w\") as f:\n",
|
1130 |
-
" f.write(result_str)\n",
|
1131 |
-
" \n",
|
1132 |
-
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
1133 |
-
"\n",
|
1134 |
-
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
1135 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1136 |
-
" \n",
|
1137 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
1138 |
-
" high_score_script = \"\"\n",
|
1139 |
-
" if residue_scores is not None:\n",
|
1140 |
-
" # Sort residues based on their scores\n",
|
1141 |
-
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1142 |
-
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1143 |
-
" \n",
|
1144 |
-
" high_score_script = \"\"\"\n",
|
1145 |
-
" // Reset all styles first\n",
|
1146 |
-
" viewer.getModel(0).setStyle({}, {});\n",
|
1147 |
-
" \n",
|
1148 |
-
" // Show only the selected chain\n",
|
1149 |
-
" viewer.getModel(0).setStyle(\n",
|
1150 |
-
" {\"chain\": \"%s\"}, \n",
|
1151 |
-
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
1152 |
-
" );\n",
|
1153 |
-
" \n",
|
1154 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
1155 |
-
" let highScoreResidues = [%s];\n",
|
1156 |
-
" viewer.getModel(0).setStyle(\n",
|
1157 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
1158 |
-
" {\"stick\": {\"color\": \"red\"}}\n",
|
1159 |
-
" );\n",
|
1160 |
-
"\n",
|
1161 |
-
" // Highlight medium-scoring residues only for the selected chain\n",
|
1162 |
-
" let midScoreResidues = [%s];\n",
|
1163 |
-
" viewer.getModel(0).setStyle(\n",
|
1164 |
-
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
1165 |
-
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1166 |
-
" );\n",
|
1167 |
-
" \"\"\" % (segment, \n",
|
1168 |
-
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1169 |
-
" segment,\n",
|
1170 |
-
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
1171 |
-
" segment)\n",
|
1172 |
-
" \n",
|
1173 |
-
" html_content = f\"\"\"\n",
|
1174 |
-
" <!DOCTYPE html>\n",
|
1175 |
-
" <html>\n",
|
1176 |
-
" <head> \n",
|
1177 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1178 |
-
" <style>\n",
|
1179 |
-
" .mol-container {{\n",
|
1180 |
-
" width: 100%;\n",
|
1181 |
-
" height: 700px;\n",
|
1182 |
-
" position: relative;\n",
|
1183 |
-
" }}\n",
|
1184 |
-
" </style>\n",
|
1185 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1186 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1187 |
-
" </head>\n",
|
1188 |
-
" <body>\n",
|
1189 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1190 |
-
" <script>\n",
|
1191 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1192 |
-
" $(document).ready(function () {{\n",
|
1193 |
-
" let element = $(\"#container\");\n",
|
1194 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
1195 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1196 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
1197 |
-
" \n",
|
1198 |
-
" // Reset all styles and show only selected chain\n",
|
1199 |
-
" viewer.getModel(0).setStyle(\n",
|
1200 |
-
" {{\"chain\": \"{segment}\"}}, \n",
|
1201 |
-
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
1202 |
-
" );\n",
|
1203 |
-
" \n",
|
1204 |
-
" {high_score_script}\n",
|
1205 |
-
" \n",
|
1206 |
-
" // Add hover functionality\n",
|
1207 |
-
" viewer.setHoverable(\n",
|
1208 |
-
" {{}}, \n",
|
1209 |
-
" true, \n",
|
1210 |
-
" function(atom, viewer, event, container) {{\n",
|
1211 |
-
" if (!atom.label) {{\n",
|
1212 |
-
" atom.label = viewer.addLabel(\n",
|
1213 |
-
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1214 |
-
" {{\n",
|
1215 |
-
" position: atom, \n",
|
1216 |
-
" backgroundColor: 'mintcream', \n",
|
1217 |
-
" fontColor: 'black',\n",
|
1218 |
-
" fontSize: 12,\n",
|
1219 |
-
" padding: 2\n",
|
1220 |
-
" }}\n",
|
1221 |
-
" );\n",
|
1222 |
-
" }}\n",
|
1223 |
-
" }},\n",
|
1224 |
-
" function(atom, viewer) {{\n",
|
1225 |
-
" if (atom.label) {{\n",
|
1226 |
-
" viewer.removeLabel(atom.label);\n",
|
1227 |
-
" delete atom.label;\n",
|
1228 |
-
" }}\n",
|
1229 |
-
" }}\n",
|
1230 |
-
" );\n",
|
1231 |
-
" \n",
|
1232 |
-
" viewer.zoomTo();\n",
|
1233 |
-
" viewer.render();\n",
|
1234 |
-
" viewer.zoom(0.8, 2000);\n",
|
1235 |
-
" }});\n",
|
1236 |
-
" </script>\n",
|
1237 |
-
" </body>\n",
|
1238 |
-
" </html>\n",
|
1239 |
-
" \"\"\"\n",
|
1240 |
-
" \n",
|
1241 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1242 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1243 |
-
"\n",
|
1244 |
-
"reps = [\n",
|
1245 |
-
" {\n",
|
1246 |
-
" \"model\": 0,\n",
|
1247 |
-
" \"style\": \"cartoon\",\n",
|
1248 |
-
" \"color\": \"whiteCarbon\",\n",
|
1249 |
-
" \"residue_range\": \"\",\n",
|
1250 |
-
" \"around\": 0,\n",
|
1251 |
-
" \"byres\": False,\n",
|
1252 |
-
" }\n",
|
1253 |
-
" ]\n",
|
1254 |
-
"\n",
|
1255 |
-
"# Gradio UI\n",
|
1256 |
-
"with gr.Blocks() as demo:\n",
|
1257 |
-
" gr.Markdown(\"# Protein Binding Site Prediction (Random Scores)\")\n",
|
1258 |
-
" with gr.Row():\n",
|
1259 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1260 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1261 |
-
"\n",
|
1262 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
1263 |
-
"\n",
|
1264 |
-
" with gr.Row():\n",
|
1265 |
-
" #pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1266 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1267 |
-
" prediction_btn = gr.Button(\"Predict Random Binding Site Scores\")\n",
|
1268 |
-
"\n",
|
1269 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
1270 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1271 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
1272 |
-
" \n",
|
1273 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
1274 |
-
" \n",
|
1275 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
1276 |
-
" \n",
|
1277 |
-
" gr.Markdown(\"## Examples\")\n",
|
1278 |
-
" gr.Examples(\n",
|
1279 |
-
" examples=[\n",
|
1280 |
-
" [\"7RPZ\", \"A\"],\n",
|
1281 |
-
" [\"2IWI\", \"B\"],\n",
|
1282 |
-
" [\"2F6V\", \"A\"]\n",
|
1283 |
-
" ],\n",
|
1284 |
-
" inputs=[pdb_input, segment_input],\n",
|
1285 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1286 |
-
" )\n",
|
1287 |
-
"\n",
|
1288 |
-
"demo.launch(share=True)"
|
1289 |
-
]
|
1290 |
-
},
|
1291 |
-
{
|
1292 |
-
"cell_type": "code",
|
1293 |
-
"execution_count": null,
|
1294 |
-
"id": "b61d06ec-a4ee-4f65-925f-d2688730416a",
|
1295 |
-
"metadata": {},
|
1296 |
-
"outputs": [],
|
1297 |
-
"source": []
|
1298 |
-
},
|
1299 |
-
{
|
1300 |
-
"cell_type": "code",
|
1301 |
-
"execution_count": null,
|
1302 |
-
"id": "4d67d69f-1f53-4bcc-8905-8d29384c4e20",
|
1303 |
-
"metadata": {},
|
1304 |
-
"outputs": [],
|
1305 |
-
"source": [
|
1306 |
-
"import gradio as gr\n",
|
1307 |
-
"import requests\n",
|
1308 |
-
"from Bio.PDB import PDBParser\n",
|
1309 |
-
"import numpy as np\n",
|
1310 |
-
"import os\n",
|
1311 |
-
"from gradio_molecule3d import Molecule3D\n",
|
1312 |
-
"\n",
|
1313 |
-
"\n",
|
1314 |
-
"from model_loader import load_model\n",
|
1315 |
-
"\n",
|
1316 |
-
"import torch\n",
|
1317 |
-
"import torch.nn as nn\n",
|
1318 |
-
"import torch.nn.functional as F\n",
|
1319 |
-
"from torch.utils.data import DataLoader\n",
|
1320 |
-
"\n",
|
1321 |
-
"import re\n",
|
1322 |
-
"import pandas as pd\n",
|
1323 |
-
"import copy\n",
|
1324 |
-
"\n",
|
1325 |
-
"import transformers, datasets\n",
|
1326 |
-
"from transformers import AutoTokenizer\n",
|
1327 |
-
"from transformers import DataCollatorForTokenClassification\n",
|
1328 |
-
"\n",
|
1329 |
-
"from datasets import Dataset\n",
|
1330 |
-
"\n",
|
1331 |
-
"from scipy.special import expit\n",
|
1332 |
-
"\n",
|
1333 |
-
"# Load model and move to device\n",
|
1334 |
-
"checkpoint = 'ThorbenF/prot_t5_xl_uniref50'\n",
|
1335 |
-
"max_length = 1500\n",
|
1336 |
-
"model, tokenizer = load_model(checkpoint, max_length)\n",
|
1337 |
-
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
1338 |
-
"model.to(device)\n",
|
1339 |
-
"model.eval()\n",
|
1340 |
-
"\n",
|
1341 |
-
"def normalize_scores(scores):\n",
|
1342 |
-
" min_score = np.min(scores)\n",
|
1343 |
-
" max_score = np.max(scores)\n",
|
1344 |
-
" return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores\n",
|
1345 |
-
" \n",
|
1346 |
-
"def read_mol(pdb_path):\n",
|
1347 |
-
" \"\"\"Read PDB file and return its content as a string\"\"\"\n",
|
1348 |
-
" with open(pdb_path, 'r') as f:\n",
|
1349 |
-
" return f.read()\n",
|
1350 |
-
"\n",
|
1351 |
-
"def fetch_pdb(pdb_id):\n",
|
1352 |
-
" pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'\n",
|
1353 |
-
" pdb_path = f'{pdb_id}.pdb'\n",
|
1354 |
-
" response = requests.get(pdb_url)\n",
|
1355 |
-
" if response.status_code == 200:\n",
|
1356 |
-
" with open(pdb_path, 'wb') as f:\n",
|
1357 |
-
" f.write(response.content)\n",
|
1358 |
-
" return pdb_path\n",
|
1359 |
-
" else:\n",
|
1360 |
-
" return None\n",
|
1361 |
-
"\n",
|
1362 |
-
"def process_pdb(pdb_id, segment):\n",
|
1363 |
-
" pdb_path = fetch_pdb(pdb_id)\n",
|
1364 |
-
" if not pdb_path:\n",
|
1365 |
-
" return \"Failed to fetch PDB file\", None, None\n",
|
1366 |
-
" \n",
|
1367 |
-
" parser = PDBParser(QUIET=1)\n",
|
1368 |
-
" structure = parser.get_structure('protein', pdb_path)\n",
|
1369 |
-
" \n",
|
1370 |
-
" try:\n",
|
1371 |
-
" chain = structure[0][segment]\n",
|
1372 |
-
" except KeyError:\n",
|
1373 |
-
" return \"Invalid Chain ID\", None, None\n",
|
1374 |
-
" \n",
|
1375 |
-
" \n",
|
1376 |
-
" aa_dict = {\n",
|
1377 |
-
" 'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F',\n",
|
1378 |
-
" 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LYS': 'K', 'LEU': 'L',\n",
|
1379 |
-
" 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R',\n",
|
1380 |
-
" 'SER': 'S', 'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y',\n",
|
1381 |
-
" 'MSE': 'M', 'SEP': 'S', 'TPO': 'T', 'CSO': 'C', 'PTR': 'Y', 'HYP': 'P'\n",
|
1382 |
-
" }\n",
|
1383 |
-
" \n",
|
1384 |
-
" # Exclude non-amino acid residues\n",
|
1385 |
-
" sequence = \"\".join(\n",
|
1386 |
-
" aa_dict[residue.get_resname().strip()] \n",
|
1387 |
-
" for residue in chain \n",
|
1388 |
-
" if residue.get_resname().strip() in aa_dict\n",
|
1389 |
-
" )\n",
|
1390 |
-
" sequence2 = [\n",
|
1391 |
-
" (res.id[1], res) for res in chain\n",
|
1392 |
-
" if res.get_resname().strip() in aa_dict\n",
|
1393 |
-
" ]\n",
|
1394 |
-
" \n",
|
1395 |
-
" # Prepare input for model prediction\n",
|
1396 |
-
" input_ids = tokenizer(\" \".join(sequence), return_tensors=\"pt\").input_ids.to(device)\n",
|
1397 |
-
" with torch.no_grad():\n",
|
1398 |
-
" outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()\n",
|
1399 |
-
"\n",
|
1400 |
-
" # Calculate scores and normalize them\n",
|
1401 |
-
" scores = expit(outputs[:, 1] - outputs[:, 0])\n",
|
1402 |
-
" normalized_scores = normalize_scores(scores)\n",
|
1403 |
-
"\n",
|
1404 |
-
" # Zip residues with scores to track the residue ID and score\n",
|
1405 |
-
" residue_scores = [(resi, score) for (resi, _), score in zip(sequence2, normalized_scores)]\n",
|
1406 |
-
" \n",
|
1407 |
-
" result_str = \"\\n\".join([\n",
|
1408 |
-
" f\"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}\" \n",
|
1409 |
-
" for i, res in enumerate(chain) if res.get_resname().strip() in aa_dict\n",
|
1410 |
-
" ])\n",
|
1411 |
-
" \n",
|
1412 |
-
" # Save the predictions to a file\n",
|
1413 |
-
" prediction_file = f\"{pdb_id}_predictions.txt\"\n",
|
1414 |
-
" with open(prediction_file, \"w\") as f:\n",
|
1415 |
-
" f.write(result_str)\n",
|
1416 |
-
" \n",
|
1417 |
-
" return result_str, molecule(pdb_path, residue_scores, segment), prediction_file\n",
|
1418 |
-
"\n",
|
1419 |
-
"def molecule(input_pdb, residue_scores=None, segment='A'):\n",
|
1420 |
-
" mol = read_mol(input_pdb) # Read PDB file content\n",
|
1421 |
-
" \n",
|
1422 |
-
" # Prepare high-scoring residues script if scores are provided\n",
|
1423 |
-
" high_score_script = \"\"\n",
|
1424 |
-
" if residue_scores is not None:\n",
|
1425 |
-
" # Sort residues based on their scores\n",
|
1426 |
-
" high_score_residues = [resi for resi, score in residue_scores if score > 0.75]\n",
|
1427 |
-
" mid_score_residues = [resi for resi, score in residue_scores if 0.5 < score <= 0.75]\n",
|
1428 |
-
" \n",
|
1429 |
-
" high_score_script = \"\"\"\n",
|
1430 |
-
" // Reset all styles first\n",
|
1431 |
-
" viewer.getModel(0).setStyle({}, {});\n",
|
1432 |
-
" \n",
|
1433 |
-
" // Show only the selected chain\n",
|
1434 |
-
" viewer.getModel(0).setStyle(\n",
|
1435 |
-
" {\"chain\": \"%s\"}, \n",
|
1436 |
-
" { cartoon: {colorscheme:\"whiteCarbon\"} }\n",
|
1437 |
-
" );\n",
|
1438 |
-
" \n",
|
1439 |
-
" // Highlight high-scoring residues only for the selected chain\n",
|
1440 |
-
" let highScoreResidues = [%s];\n",
|
1441 |
-
" viewer.getModel(0).setStyle(\n",
|
1442 |
-
" {\"chain\": \"%s\", \"resi\": highScoreResidues}, \n",
|
1443 |
-
" {\"stick\": {\"color\": \"red\"}}\n",
|
1444 |
-
" );\n",
|
1445 |
-
"\n",
|
1446 |
-
" // Highlight medium-scoring residues only for the selected chain\n",
|
1447 |
-
" let midScoreResidues = [%s];\n",
|
1448 |
-
" viewer.getModel(0).setStyle(\n",
|
1449 |
-
" {\"chain\": \"%s\", \"resi\": midScoreResidues}, \n",
|
1450 |
-
" {\"stick\": {\"color\": \"orange\"}}\n",
|
1451 |
-
" );\n",
|
1452 |
-
" \"\"\" % (segment, \n",
|
1453 |
-
" \", \".join(str(resi) for resi in high_score_residues),\n",
|
1454 |
-
" segment,\n",
|
1455 |
-
" \", \".join(str(resi) for resi in mid_score_residues),\n",
|
1456 |
-
" segment)\n",
|
1457 |
-
" \n",
|
1458 |
-
" html_content = f\"\"\"\n",
|
1459 |
-
" <!DOCTYPE html>\n",
|
1460 |
-
" <html>\n",
|
1461 |
-
" <head> \n",
|
1462 |
-
" <meta http-equiv=\"content-type\" content=\"text/html; charset=UTF-8\" />\n",
|
1463 |
-
" <style>\n",
|
1464 |
-
" .mol-container {{\n",
|
1465 |
-
" width: 100%;\n",
|
1466 |
-
" height: 700px;\n",
|
1467 |
-
" position: relative;\n",
|
1468 |
-
" }}\n",
|
1469 |
-
" </style>\n",
|
1470 |
-
" <script src=\"https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js\"></script>\n",
|
1471 |
-
" <script src=\"https://3Dmol.csb.pitt.edu/build/3Dmol-min.js\"></script>\n",
|
1472 |
-
" </head>\n",
|
1473 |
-
" <body>\n",
|
1474 |
-
" <div id=\"container\" class=\"mol-container\"></div>\n",
|
1475 |
-
" <script>\n",
|
1476 |
-
" let pdb = `{mol}`; // Use template literal to properly escape PDB content\n",
|
1477 |
-
" $(document).ready(function () {{\n",
|
1478 |
-
" let element = $(\"#container\");\n",
|
1479 |
-
" let config = {{ backgroundColor: \"white\" }};\n",
|
1480 |
-
" let viewer = $3Dmol.createViewer(element, config);\n",
|
1481 |
-
" viewer.addModel(pdb, \"pdb\");\n",
|
1482 |
-
" \n",
|
1483 |
-
" // Reset all styles and show only selected chain\n",
|
1484 |
-
" viewer.getModel(0).setStyle(\n",
|
1485 |
-
" {{\"chain\": \"{segment}\"}}, \n",
|
1486 |
-
" {{ cartoon: {{ colorscheme:\"whiteCarbon\" }} }}\n",
|
1487 |
-
" );\n",
|
1488 |
-
" \n",
|
1489 |
-
" {high_score_script}\n",
|
1490 |
-
" \n",
|
1491 |
-
" // Add hover functionality\n",
|
1492 |
-
" viewer.setHoverable(\n",
|
1493 |
-
" {{}}, \n",
|
1494 |
-
" true, \n",
|
1495 |
-
" function(atom, viewer, event, container) {{\n",
|
1496 |
-
" if (!atom.label) {{\n",
|
1497 |
-
" atom.label = viewer.addLabel(\n",
|
1498 |
-
" atom.resn + \":\" +atom.resi + \":\" + atom.atom, \n",
|
1499 |
-
" {{\n",
|
1500 |
-
" position: atom, \n",
|
1501 |
-
" backgroundColor: 'mintcream', \n",
|
1502 |
-
" fontColor: 'black',\n",
|
1503 |
-
" fontSize: 12,\n",
|
1504 |
-
" padding: 2\n",
|
1505 |
-
" }}\n",
|
1506 |
-
" );\n",
|
1507 |
-
" }}\n",
|
1508 |
-
" }},\n",
|
1509 |
-
" function(atom, viewer) {{\n",
|
1510 |
-
" if (atom.label) {{\n",
|
1511 |
-
" viewer.removeLabel(atom.label);\n",
|
1512 |
-
" delete atom.label;\n",
|
1513 |
-
" }}\n",
|
1514 |
-
" }}\n",
|
1515 |
-
" );\n",
|
1516 |
-
" \n",
|
1517 |
-
" viewer.zoomTo();\n",
|
1518 |
-
" viewer.render();\n",
|
1519 |
-
" viewer.zoom(0.8, 2000);\n",
|
1520 |
-
" }});\n",
|
1521 |
-
" </script>\n",
|
1522 |
-
" </body>\n",
|
1523 |
-
" </html>\n",
|
1524 |
-
" \"\"\"\n",
|
1525 |
-
" \n",
|
1526 |
-
" # Return the HTML content within an iframe safely encoded for special characters\n",
|
1527 |
-
" return f'<iframe width=\"100%\" height=\"700\" srcdoc=\"{html_content.replace(chr(34), \""\").replace(chr(39), \"'\")}\"></iframe>'\n",
|
1528 |
-
"\n",
|
1529 |
-
"reps = [\n",
|
1530 |
-
" {\n",
|
1531 |
-
" \"model\": 0,\n",
|
1532 |
-
" \"style\": \"cartoon\",\n",
|
1533 |
-
" \"color\": \"whiteCarbon\",\n",
|
1534 |
-
" \"residue_range\": \"\",\n",
|
1535 |
-
" \"around\": 0,\n",
|
1536 |
-
" \"byres\": False,\n",
|
1537 |
-
" }\n",
|
1538 |
-
" ]\n",
|
1539 |
-
"\n",
|
1540 |
-
"# Gradio UI\n",
|
1541 |
-
"with gr.Blocks() as demo:\n",
|
1542 |
-
" gr.Markdown(\"# Protein Binding Site Prediction\")\n",
|
1543 |
-
" with gr.Row():\n",
|
1544 |
-
" pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1545 |
-
" visualize_btn = gr.Button(\"Visualize Structure\")\n",
|
1546 |
-
"\n",
|
1547 |
-
" molecule_output2 = Molecule3D(label=\"Protein Structure\", reps=reps)\n",
|
1548 |
-
"\n",
|
1549 |
-
" with gr.Row():\n",
|
1550 |
-
" #pdb_input = gr.Textbox(value=\"2IWI\", label=\"PDB ID\", placeholder=\"Enter PDB ID here...\")\n",
|
1551 |
-
" segment_input = gr.Textbox(value=\"A\", label=\"Chain ID\", placeholder=\"Enter Chain ID here...\")\n",
|
1552 |
-
" prediction_btn = gr.Button(\"Predict Binding Site\")\n",
|
1553 |
-
"\n",
|
1554 |
-
" molecule_output = gr.HTML(label=\"Protein Structure\")\n",
|
1555 |
-
" predictions_output = gr.Textbox(label=\"Binding Site Predictions\")\n",
|
1556 |
-
" download_output = gr.File(label=\"Download Predictions\")\n",
|
1557 |
-
" \n",
|
1558 |
-
" visualize_btn.click(fetch_pdb, inputs=[pdb_input], outputs=molecule_output2)\n",
|
1559 |
-
" \n",
|
1560 |
-
" prediction_btn.click(process_pdb, inputs=[pdb_input, segment_input], outputs=[predictions_output, molecule_output, download_output])\n",
|
1561 |
-
" \n",
|
1562 |
-
" gr.Markdown(\"## Examples\")\n",
|
1563 |
-
" gr.Examples(\n",
|
1564 |
-
" examples=[\n",
|
1565 |
-
" [\"7RPZ\", \"A\"],\n",
|
1566 |
-
" [\"2IWI\", \"B\"],\n",
|
1567 |
-
" [\"2F6V\", \"A\"]\n",
|
1568 |
-
" ],\n",
|
1569 |
-
" inputs=[pdb_input, segment_input],\n",
|
1570 |
-
" outputs=[predictions_output, molecule_output, download_output]\n",
|
1571 |
-
" )\n",
|
1572 |
-
"\n",
|
1573 |
-
"demo.launch(share=True)"
|
1574 |
-
]
|
1575 |
-
}
|
1576 |
-
],
|
1577 |
-
"metadata": {
|
1578 |
-
"kernelspec": {
|
1579 |
-
"display_name": "Python (LLM)",
|
1580 |
-
"language": "python",
|
1581 |
-
"name": "llm"
|
1582 |
-
},
|
1583 |
-
"language_info": {
|
1584 |
-
"codemirror_mode": {
|
1585 |
-
"name": "ipython",
|
1586 |
-
"version": 3
|
1587 |
-
},
|
1588 |
-
"file_extension": ".py",
|
1589 |
-
"mimetype": "text/x-python",
|
1590 |
-
"name": "python",
|
1591 |
-
"nbconvert_exporter": "python",
|
1592 |
-
"pygments_lexer": "ipython3",
|
1593 |
-
"version": "3.12.7"
|
1594 |
-
}
|
1595 |
-
},
|
1596 |
-
"nbformat": 4,
|
1597 |
-
"nbformat_minor": 5
|
1598 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|