ThorbenF commited on
Commit
1f960e0
·
1 Parent(s): 4499595
Files changed (2) hide show
  1. .ipynb_checkpoints/app-checkpoint.py +29 -6
  2. app.py +29 -6
.ipynb_checkpoints/app-checkpoint.py CHANGED
@@ -54,6 +54,12 @@ def fetch_pdb(pdb_id):
54
  return pdb_path
55
  return None
56
 
 
 
 
 
 
 
57
  # Extract sequence and predict binding scores
58
  def process_pdb(pdb_id, segment):
59
  pdb_path = fetch_pdb(pdb_id)
@@ -70,9 +76,11 @@ def process_pdb(pdb_id, segment):
70
  with torch.no_grad():
71
  outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
72
 
73
- scores = outputs[:, 1] - outputs[:, 0]
 
 
74
  result_str = "\n".join([
75
- f"{res.get_resname()} {res.id[1]} {sequence[i]} {scores[i]:.2f}"
76
  for i, res in enumerate(chain)
77
  ])
78
 
@@ -86,10 +94,14 @@ with gr.Blocks() as demo:
86
  gr.Markdown("# Protein Binding Site Prediction")
87
 
88
  with gr.Row():
89
- pdb_input = gr.Textbox(label="PDB ID")
90
- segment_input = gr.Textbox(label="Segment (Chain ID)")
91
- visualize_btn = gr.Button("Visualize")
92
- prediction_btn = gr.Button("Predict")
 
 
 
 
93
 
94
  molecule_output = Molecule3D(label="Protein Structure", reps=reps)
95
  predictions_output = gr.Textbox(label="Binding Site Predictions")
@@ -102,4 +114,15 @@ with gr.Blocks() as demo:
102
  outputs=[predictions_output, molecule_output, download_output]
103
  )
104
 
 
 
 
 
 
 
 
 
 
 
 
105
  demo.launch(share=True)
 
54
  return pdb_path
55
  return None
56
 
57
+
58
+ def normalize_scores(scores):
59
+ min_score = np.min(scores)
60
+ max_score = np.max(scores)
61
+ return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
62
+
63
  # Extract sequence and predict binding scores
64
  def process_pdb(pdb_id, segment):
65
  pdb_path = fetch_pdb(pdb_id)
 
76
  with torch.no_grad():
77
  outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
78
 
79
+ scores = expit(outputs[:, 1] - outputs[:, 0])
80
+ normalized_scores = normalize_scores(scores)
81
+
82
  result_str = "\n".join([
83
+ f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
84
  for i, res in enumerate(chain)
85
  ])
86
 
 
94
  gr.Markdown("# Protein Binding Site Prediction")
95
 
96
  with gr.Row():
97
+ pdb_input = gr.Textbox(value="2IWI",
98
+ label="PDB ID",
99
+ placeholder="Enter PDB ID here...")
100
+ segment_input = gr.Textbox(value="A",
101
+ label="Chain ID (Segment)",
102
+ placeholder="Enter Chain ID here...")
103
+ visualize_btn = gr.Button("Visualize Sructure")
104
+ prediction_btn = gr.Button("Predict Ligand Binding Site")
105
 
106
  molecule_output = Molecule3D(label="Protein Structure", reps=reps)
107
  predictions_output = gr.Textbox(label="Binding Site Predictions")
 
114
  outputs=[predictions_output, molecule_output, download_output]
115
  )
116
 
117
+ gr.Markdown("## Examples")
118
+ gr.Examples(
119
+ examples=[
120
+ ["2IWI"],
121
+ ["7RPZ"],
122
+ ["3TJN"]
123
+ ],
124
+ inputs=[pdb_input, segment_input],
125
+ outputs=[predictions_output, molecule_output, download_output]
126
+ )
127
+
128
  demo.launch(share=True)
app.py CHANGED
@@ -54,6 +54,12 @@ def fetch_pdb(pdb_id):
54
  return pdb_path
55
  return None
56
 
 
 
 
 
 
 
57
  # Extract sequence and predict binding scores
58
  def process_pdb(pdb_id, segment):
59
  pdb_path = fetch_pdb(pdb_id)
@@ -70,9 +76,11 @@ def process_pdb(pdb_id, segment):
70
  with torch.no_grad():
71
  outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
72
 
73
- scores = outputs[:, 1] - outputs[:, 0]
 
 
74
  result_str = "\n".join([
75
- f"{res.get_resname()} {res.id[1]} {sequence[i]} {scores[i]:.2f}"
76
  for i, res in enumerate(chain)
77
  ])
78
 
@@ -86,10 +94,14 @@ with gr.Blocks() as demo:
86
  gr.Markdown("# Protein Binding Site Prediction")
87
 
88
  with gr.Row():
89
- pdb_input = gr.Textbox(label="PDB ID")
90
- segment_input = gr.Textbox(label="Segment (Chain ID)")
91
- visualize_btn = gr.Button("Visualize")
92
- prediction_btn = gr.Button("Predict")
 
 
 
 
93
 
94
  molecule_output = Molecule3D(label="Protein Structure", reps=reps)
95
  predictions_output = gr.Textbox(label="Binding Site Predictions")
@@ -102,4 +114,15 @@ with gr.Blocks() as demo:
102
  outputs=[predictions_output, molecule_output, download_output]
103
  )
104
 
 
 
 
 
 
 
 
 
 
 
 
105
  demo.launch(share=True)
 
54
  return pdb_path
55
  return None
56
 
57
+
58
+ def normalize_scores(scores):
59
+ min_score = np.min(scores)
60
+ max_score = np.max(scores)
61
+ return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
62
+
63
  # Extract sequence and predict binding scores
64
  def process_pdb(pdb_id, segment):
65
  pdb_path = fetch_pdb(pdb_id)
 
76
  with torch.no_grad():
77
  outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
78
 
79
+ scores = expit(outputs[:, 1] - outputs[:, 0])
80
+ normalized_scores = normalize_scores(scores)
81
+
82
  result_str = "\n".join([
83
+ f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
84
  for i, res in enumerate(chain)
85
  ])
86
 
 
94
  gr.Markdown("# Protein Binding Site Prediction")
95
 
96
  with gr.Row():
97
+ pdb_input = gr.Textbox(value="2IWI",
98
+ label="PDB ID",
99
+ placeholder="Enter PDB ID here...")
100
+ segment_input = gr.Textbox(value="A",
101
+ label="Chain ID (Segment)",
102
+ placeholder="Enter Chain ID here...")
103
+ visualize_btn = gr.Button("Visualize Sructure")
104
+ prediction_btn = gr.Button("Predict Ligand Binding Site")
105
 
106
  molecule_output = Molecule3D(label="Protein Structure", reps=reps)
107
  predictions_output = gr.Textbox(label="Binding Site Predictions")
 
114
  outputs=[predictions_output, molecule_output, download_output]
115
  )
116
 
117
+ gr.Markdown("## Examples")
118
+ gr.Examples(
119
+ examples=[
120
+ ["2IWI"],
121
+ ["7RPZ"],
122
+ ["3TJN"]
123
+ ],
124
+ inputs=[pdb_input, segment_input],
125
+ outputs=[predictions_output, molecule_output, download_output]
126
+ )
127
+
128
  demo.launch(share=True)