Spaces:
Sleeping
Sleeping
Update
Browse files- .ipynb_checkpoints/app-checkpoint.py +29 -6
- app.py +29 -6
.ipynb_checkpoints/app-checkpoint.py
CHANGED
@@ -54,6 +54,12 @@ def fetch_pdb(pdb_id):
|
|
54 |
return pdb_path
|
55 |
return None
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Extract sequence and predict binding scores
|
58 |
def process_pdb(pdb_id, segment):
|
59 |
pdb_path = fetch_pdb(pdb_id)
|
@@ -70,9 +76,11 @@ def process_pdb(pdb_id, segment):
|
|
70 |
with torch.no_grad():
|
71 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
72 |
|
73 |
-
scores = outputs[:, 1] - outputs[:, 0]
|
|
|
|
|
74 |
result_str = "\n".join([
|
75 |
-
f"{res.get_resname()} {res.id[1]} {sequence[i]} {
|
76 |
for i, res in enumerate(chain)
|
77 |
])
|
78 |
|
@@ -86,10 +94,14 @@ with gr.Blocks() as demo:
|
|
86 |
gr.Markdown("# Protein Binding Site Prediction")
|
87 |
|
88 |
with gr.Row():
|
89 |
-
pdb_input = gr.Textbox(
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
|
94 |
molecule_output = Molecule3D(label="Protein Structure", reps=reps)
|
95 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
@@ -102,4 +114,15 @@ with gr.Blocks() as demo:
|
|
102 |
outputs=[predictions_output, molecule_output, download_output]
|
103 |
)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
demo.launch(share=True)
|
|
|
54 |
return pdb_path
|
55 |
return None
|
56 |
|
57 |
+
|
58 |
+
def normalize_scores(scores):
|
59 |
+
min_score = np.min(scores)
|
60 |
+
max_score = np.max(scores)
|
61 |
+
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
62 |
+
|
63 |
# Extract sequence and predict binding scores
|
64 |
def process_pdb(pdb_id, segment):
|
65 |
pdb_path = fetch_pdb(pdb_id)
|
|
|
76 |
with torch.no_grad():
|
77 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
78 |
|
79 |
+
scores = expit(outputs[:, 1] - outputs[:, 0])
|
80 |
+
normalized_scores = normalize_scores(scores)
|
81 |
+
|
82 |
result_str = "\n".join([
|
83 |
+
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
84 |
for i, res in enumerate(chain)
|
85 |
])
|
86 |
|
|
|
94 |
gr.Markdown("# Protein Binding Site Prediction")
|
95 |
|
96 |
with gr.Row():
|
97 |
+
pdb_input = gr.Textbox(value="2IWI",
|
98 |
+
label="PDB ID",
|
99 |
+
placeholder="Enter PDB ID here...")
|
100 |
+
segment_input = gr.Textbox(value="A",
|
101 |
+
label="Chain ID (Segment)",
|
102 |
+
placeholder="Enter Chain ID here...")
|
103 |
+
visualize_btn = gr.Button("Visualize Sructure")
|
104 |
+
prediction_btn = gr.Button("Predict Ligand Binding Site")
|
105 |
|
106 |
molecule_output = Molecule3D(label="Protein Structure", reps=reps)
|
107 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
|
|
114 |
outputs=[predictions_output, molecule_output, download_output]
|
115 |
)
|
116 |
|
117 |
+
gr.Markdown("## Examples")
|
118 |
+
gr.Examples(
|
119 |
+
examples=[
|
120 |
+
["2IWI"],
|
121 |
+
["7RPZ"],
|
122 |
+
["3TJN"]
|
123 |
+
],
|
124 |
+
inputs=[pdb_input, segment_input],
|
125 |
+
outputs=[predictions_output, molecule_output, download_output]
|
126 |
+
)
|
127 |
+
|
128 |
demo.launch(share=True)
|
app.py
CHANGED
@@ -54,6 +54,12 @@ def fetch_pdb(pdb_id):
|
|
54 |
return pdb_path
|
55 |
return None
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Extract sequence and predict binding scores
|
58 |
def process_pdb(pdb_id, segment):
|
59 |
pdb_path = fetch_pdb(pdb_id)
|
@@ -70,9 +76,11 @@ def process_pdb(pdb_id, segment):
|
|
70 |
with torch.no_grad():
|
71 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
72 |
|
73 |
-
scores = outputs[:, 1] - outputs[:, 0]
|
|
|
|
|
74 |
result_str = "\n".join([
|
75 |
-
f"{res.get_resname()} {res.id[1]} {sequence[i]} {
|
76 |
for i, res in enumerate(chain)
|
77 |
])
|
78 |
|
@@ -86,10 +94,14 @@ with gr.Blocks() as demo:
|
|
86 |
gr.Markdown("# Protein Binding Site Prediction")
|
87 |
|
88 |
with gr.Row():
|
89 |
-
pdb_input = gr.Textbox(
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
93 |
|
94 |
molecule_output = Molecule3D(label="Protein Structure", reps=reps)
|
95 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
@@ -102,4 +114,15 @@ with gr.Blocks() as demo:
|
|
102 |
outputs=[predictions_output, molecule_output, download_output]
|
103 |
)
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
demo.launch(share=True)
|
|
|
54 |
return pdb_path
|
55 |
return None
|
56 |
|
57 |
+
|
58 |
+
def normalize_scores(scores):
|
59 |
+
min_score = np.min(scores)
|
60 |
+
max_score = np.max(scores)
|
61 |
+
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
|
62 |
+
|
63 |
# Extract sequence and predict binding scores
|
64 |
def process_pdb(pdb_id, segment):
|
65 |
pdb_path = fetch_pdb(pdb_id)
|
|
|
76 |
with torch.no_grad():
|
77 |
outputs = model(input_ids).logits.detach().cpu().numpy().squeeze()
|
78 |
|
79 |
+
scores = expit(outputs[:, 1] - outputs[:, 0])
|
80 |
+
normalized_scores = normalize_scores(scores)
|
81 |
+
|
82 |
result_str = "\n".join([
|
83 |
+
f"{res.get_resname()} {res.id[1]} {sequence[i]} {normalized_scores[i]:.2f}"
|
84 |
for i, res in enumerate(chain)
|
85 |
])
|
86 |
|
|
|
94 |
gr.Markdown("# Protein Binding Site Prediction")
|
95 |
|
96 |
with gr.Row():
|
97 |
+
pdb_input = gr.Textbox(value="2IWI",
|
98 |
+
label="PDB ID",
|
99 |
+
placeholder="Enter PDB ID here...")
|
100 |
+
segment_input = gr.Textbox(value="A",
|
101 |
+
label="Chain ID (Segment)",
|
102 |
+
placeholder="Enter Chain ID here...")
|
103 |
+
visualize_btn = gr.Button("Visualize Sructure")
|
104 |
+
prediction_btn = gr.Button("Predict Ligand Binding Site")
|
105 |
|
106 |
molecule_output = Molecule3D(label="Protein Structure", reps=reps)
|
107 |
predictions_output = gr.Textbox(label="Binding Site Predictions")
|
|
|
114 |
outputs=[predictions_output, molecule_output, download_output]
|
115 |
)
|
116 |
|
117 |
+
gr.Markdown("## Examples")
|
118 |
+
gr.Examples(
|
119 |
+
examples=[
|
120 |
+
["2IWI"],
|
121 |
+
["7RPZ"],
|
122 |
+
["3TJN"]
|
123 |
+
],
|
124 |
+
inputs=[pdb_input, segment_input],
|
125 |
+
outputs=[predictions_output, molecule_output, download_output]
|
126 |
+
)
|
127 |
+
|
128 |
demo.launch(share=True)
|