Spaces:
Runtime error
Runtime error
File size: 1,809 Bytes
107b8d2 f560239 107b8d2 eefdf2d 107b8d2 f560239 107b8d2 3cfeb78 eefdf2d f560239 107b8d2 f560239 107b8d2 f560239 303ad99 f560239 303ad99 f560239 3cfeb78 107b8d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
from torch.distributions.categorical import Categorical
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
def generate_peptide(protein_seq, peptide_length, top_k):
peptide_length = int(peptide_length)
top_k = int(top_k)
masked_peptide = '<mask>' * peptide_length
input_sequence = protein_seq + masked_peptide
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
with torch.no_grad():
logits = model(**inputs).logits
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
logits_at_masks = logits[0, mask_token_indices]
# Apply top-k sampling
top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
predicted_indices = Categorical(probabilities).sample()
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
generated_peptide = tokenizer.decode(predicted_token_ids, skip_special_tokens=True)
return generated_peptide.replace(' ', '')
# Define the Gradio interface
interface = gr.Interface(
fn=generate_peptide,
inputs=[
gr.Textbox(label="Protein Sequence", info = "Enter protein sequence here", type="text"),
gr.Slider(3, 50, value=15, label="Peptide Length",
info='Default value is 15'),
gr.Slider(1, 10, value=3, label="Top K Value", default="3",
info='Default value is 3')
],
outputs="textbox",
)
interface.launch()
|