Spaces:
Paused
Paused
""" | |
A model worker executes the model. | |
""" | |
import argparse | |
import asyncio | |
import json | |
import time | |
import threading | |
import uuid | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.responses import StreamingResponse | |
import requests | |
import torch | |
import uvicorn | |
from functools import partial | |
from starvector.serve.constants import WORKER_HEART_BEAT_INTERVAL, CLIP_QUERY_LENGTH | |
from starvector.serve.util import (build_logger, server_error_msg, | |
pretty_print_semaphore) | |
from starvector.serve.util import process_images, load_image_from_base64 | |
from threading import Thread | |
from transformers import TextIteratorStreamer | |
from openai import OpenAI | |
GB = 1 << 30 | |
worker_id = str(uuid.uuid4())[:6] | |
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
global_counter = 0 | |
model_semaphore = None | |
def heart_beat_worker(controller): | |
while True: | |
time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
controller.send_heart_beat() | |
class ModelWorker: | |
def __init__(self, controller_addr, worker_addr, vllm_base_url, | |
worker_id, no_register, model_name, openai_api_key): | |
self.controller_addr = controller_addr | |
self.worker_addr = worker_addr | |
self.worker_id = worker_id | |
self.vllm_base_url = vllm_base_url | |
self.model_name = model_name | |
self.openai_api_key = openai_api_key | |
self.client = OpenAI( | |
api_key=openai_api_key, | |
base_url=vllm_base_url, | |
) | |
if "text2svg" in self.model_name.lower(): | |
self.task = "Text2SVG" | |
elif "im2svg" in self.model_name.lower(): | |
self.task = "Image2SVG" | |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
self.is_multimodal = 'starvector' in self.model_name.lower() | |
if not no_register: | |
self.register_to_controller() | |
self.heart_beat_thread = threading.Thread( | |
target=heart_beat_worker, args=(self,)) | |
self.heart_beat_thread.start() | |
def register_to_controller(self): | |
logger.info("Register to controller") | |
url = self.controller_addr + "/register_worker" | |
data = { | |
"worker_name": self.worker_addr, | |
"check_heart_beat": True, | |
"worker_status": self.get_status() | |
} | |
r = requests.post(url, json=data) | |
assert r.status_code == 200 | |
def send_heart_beat(self): | |
logger.info(f"Send heart beat. Models: {[self.model_name]}. " | |
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " | |
f"global_counter: {global_counter}") | |
url = self.controller_addr + "/receive_heart_beat" | |
while True: | |
try: | |
ret = requests.post(url, json={ | |
"worker_name": self.worker_addr, | |
"queue_length": self.get_queue_length()}, timeout=30) | |
exist = ret.json()["exist"] | |
break | |
except requests.exceptions.RequestException as e: | |
logger.error(f"heart beat error: {e}") | |
time.sleep(5) | |
if not exist: | |
self.register_to_controller() | |
def get_queue_length(self): | |
if model_semaphore is None: | |
return 0 | |
else: | |
return args.limit_model_concurrency - model_semaphore._value + (len( | |
model_semaphore._waiters) if model_semaphore._waiters is not None else 0) | |
def get_status(self): | |
return { | |
"model_names": [self.model_name], | |
"speed": 1, | |
"queue_length": self.get_queue_length(), | |
} | |
def generate_stream(self, params): | |
num_beams = int(params.get("num_beams", 1)) | |
temperature = float(params.get("temperature", 1.0)) | |
len_penalty = float(params.get("len_penalty", 1.0)) | |
top_p = float(params.get("top_p", 1.0)) | |
max_context_length = 1000 | |
# prompt = params["prompt"] | |
prompt = "<svg " | |
if self.task == "Image2SVG": | |
images = params.get("images", []) | |
# Get the first image if available, otherwise None | |
image_base_64 = images[0] if images and len(images) > 0 else None | |
if not image_base_64: | |
yield json.dumps({"text": "Error: No image provided for Image2SVG task", "error_code": 1}).encode() + b"\0" | |
return | |
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 8192) | |
max_new_tokens = min(max_new_tokens, max_context_length - CLIP_QUERY_LENGTH) | |
# Use the chat completions endpoint | |
vllm_endpoint = f"{self.vllm_base_url}/v1/chat/completions" | |
# Use a model name that vLLM recognizes | |
# The full path including the organization is important | |
model_name_for_vllm = params['model'] | |
# Format payload for the chat completions endpoint | |
request_payload = { | |
"model": model_name_for_vllm, | |
"messages": [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": "<image-start>"}, | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_base_64}"}} | |
] | |
} | |
], | |
"max_tokens": 7500, | |
"temperature": temperature, | |
"top_p": top_p, | |
"stream": True | |
} | |
# Log the request for debugging | |
logger.info(f"Request to vLLM: {vllm_endpoint}") | |
logger.info(f"Using model: {model_name_for_vllm}") | |
# Use requests instead of OpenAI client | |
response = requests.post( | |
vllm_endpoint, | |
json=request_payload, | |
stream=True, | |
headers={"Content-Type": "application/json"} | |
) | |
# Log the response status for debugging | |
logger.info(f"Response status: {response.status_code}") | |
if response.status_code != 200: | |
try: | |
error_detail = response.json() | |
logger.error(f"Error from vLLM server: {error_detail}") | |
except json.JSONDecodeError: | |
logger.error(f"Error from vLLM server: {response.text}") | |
yield json.dumps({"text": f"Error communicating with model server: {response.status_code}", "error_code": 1}).encode() + b"\0" | |
return | |
# Process the streaming response | |
output_text = "" | |
for line in response.iter_lines(): | |
if line: | |
# Skip the "data: " prefix if present | |
if line.startswith(b"data: "): | |
line = line[6:] | |
if line.strip() == b"[DONE]": | |
break | |
try: | |
data = json.loads(line) | |
if "choices" in data and len(data["choices"]) > 0: | |
delta = data["choices"][0].get("delta", {}) | |
content = delta.get("content", "") | |
if content: | |
output_text += content | |
yield json.dumps({"text": output_text, "error_code": 0}).encode() + b"\0" | |
except json.JSONDecodeError: | |
logger.error(f"Failed to parse line as JSON: {line}") | |
continue | |
# Send final output if not already sent | |
if output_text: | |
yield json.dumps({"text": output_text, "error_code": 0}).encode() + b"\0" | |
elif self.task == "Text2SVG": | |
# Implementation for Text2SVG task would go here | |
yield json.dumps({"text": "Text2SVG task not implemented yet", "error_code": 1}).encode() + b"\0" | |
return | |
def generate_stream_gate(self, params): | |
try: | |
for x in self.generate_stream(params): | |
yield x | |
except ValueError as e: | |
print("Caught ValueError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except torch.cuda.CudaError as e: | |
print("Caught torch.cuda.CudaError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
except Exception as e: | |
print("Caught Unknown Error", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() + b"\0" | |
app = FastAPI() | |
def release_model_semaphore(fn=None): | |
model_semaphore.release() | |
if fn is not None: | |
fn() | |
async def generate_stream(request: Request): | |
global model_semaphore, global_counter | |
global_counter += 1 | |
params = await request.json() | |
if model_semaphore is None: | |
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) | |
await model_semaphore.acquire() | |
worker.send_heart_beat() | |
generator = worker.generate_stream_gate(params) | |
background_tasks = BackgroundTasks() | |
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) | |
return StreamingResponse(generator, background=background_tasks) | |
async def get_status(request: Request): | |
return worker.get_status() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--host", type=str, default="localhost") | |
parser.add_argument("--port", type=int, default=21002) | |
parser.add_argument("--worker-address", type=str, | |
default="http://localhost:21002") | |
parser.add_argument("--controller-address", type=str, | |
default="http://localhost:21001") | |
parser.add_argument("--model-name", type=str) | |
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.") | |
parser.add_argument("--limit-model-concurrency", type=int, default=5) | |
parser.add_argument("--stream-interval", type=int, default=1) | |
parser.add_argument("--no-register", action="store_true") | |
parser.add_argument("--openai-api-key", type=str, default="EMPTY") | |
parser.add_argument("--vllm-base-url", type=str, default="http://localhost:8000") | |
args = parser.parse_args() | |
logger.info(f"args: {args}") | |
if args.multi_modal: | |
logger.warning("Multimodal mode is automatically detected with model name, please make sure `starvector` is included in the model path.") | |
worker = ModelWorker(args.controller_address, | |
args.worker_address, | |
args.vllm_base_url, | |
worker_id, | |
args.no_register, | |
args.model_name, | |
args.openai_api_key, | |
) | |
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |