demo-chat / app.py
Todd Deshane
add chat
638b146
import chainlit as cl
import pandas as pd
import io
import matplotlib.pyplot as plt
import base64
from io import BytesIO
from pandasai import SmartDataframe
import pandas as pd
from pandasai.llm import OpenAI
from io import StringIO
import matplotlib.pyplot as plt
import csv
from collections import defaultdict
import os
from langchain.agents import AgentExecutor, AgentType, initialize_agent
from langchain.agents.structured_chat.prompt import SUFFIX
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from chainlit.action import Action
from chainlit.input_widget import Select, Switch, Slider
from langchain.tools import StructuredTool, Tool
# this is our tool - which is what allows our agent to generate images in the first place!
# the `description` field is of utmost imporance as it is what the LLM "brain" uses to determine
# which tool to use for a given input.
got_csv = False
@cl.on_chat_start
async def start():
"""
This is called when the Chainlit chat is started!
We can add some settings to our application to allow users to select the appropriate model, and more!
"""
settings = await cl.ChatSettings(
[
Select(
id="Model",
label="OpenAI - Model",
values=["gpt-3.5-turbo", "gpt-4-1106-preview"],
initial_index=1,
),
Switch(id="Streaming", label="OpenAI - Stream Tokens", initial=True),
Slider(
id="Temperature",
label="OpenAI - Temperature",
initial=0,
min=0,
max=2,
step=0.1,
),
]
).send()
await setup_agent(settings)
@cl.on_settings_update
async def setup_agent(settings):
print("Setup agent with following settings: ", settings)
# We set up our agent with the user selected (or default) settings here.
llm = ChatOpenAI(
temperature=settings["Temperature"],
streaming=settings["Streaming"],
model=settings["Model"],
)
# We get our memory here, which is used to track the conversation history.
memory = get_memory()
# This suffix is used to provide the chat history to the prompt.
_SUFFIX = "Chat history:\n{chat_history}\n\n" + SUFFIX
# We initialize our agent here, which is simply being used to decide between responding with text
# or an image
agent = initialize_agent(
llm=llm, # our LLM (default is GPT-4 Turbo)
tools = [
generate_most_valuable_feature
],
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION, # the agent type we're using today
memory=memory, # our memory!
agent_kwargs={
"suffix": _SUFFIX, # adding our chat history suffix
"input_variables": ["input", "agent_scratchpad", "chat_history"],
},
)
cl.user_session.set("agent", agent) # storing our agent in the user session
@cl.cache
def get_memory():
"""
This is used to track the conversation history and allow our agent to
remember what was said before.
"""
return ConversationBufferMemory(memory_key="chat_history")
def find_most_valuable_feature(csv_file):
print("find_most_valuable_feature")
print(csv_file)
smart_llm = OpenAI(api_token=os.environ["OPENAI_API_KEY"])
# Initialize a defaultdict to store column data
columns = defaultdict(list)
# Read the CSV file and populate the defaultdict
with open("upload.csv") as f:
reader = csv.reader(f)
headers = next(reader)
for row in reader:
for header, value in zip(headers, row):
columns[header].append(value)
# Manually create a DataFrame from the defaultdict
smart_df = pd.DataFrame({
"ID": columns["ID"],
"Date and Time": columns["Date and Time"],
"Business Unit": columns["Business Unit"],
"Usage Change": columns["Usage Change"],
"Wolftech Improvement": columns["Wolftech Improvement"],
"Likelihood to Recommend": columns["Likelihood to Recommend"],
"Effective Training": columns["Effective Training"],
"Most Valuable Feature": columns["Most Valuable Feature"]
})
smart_df = SmartDataframe(smart_df, config={"llm": smart_llm})
out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?')
print(out)
df = out
# Plotting
plt.figure(figsize=(10, 6))
plt.bar(df["Most Valuable Feature"], df["Count"], color='blue')
plt.xlabel('Most Valuable Feature')
plt.ylabel('Count')
plt.title('Count of Most Valuable Features')
plt.xticks(rotation=45, ha="right") # Rotate labels for better readability
plt.tight_layout() # Adjust layout for better fit
# Save the plot to a BytesIO object
image_buffer = BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
return image_buffer
generate_most_valuable_feature = Tool.from_function(
func=find_most_valuable_feature,
name="Find most valuable feature",
description=f"Useful for finding the most valuable feature from a CSV file",
return_direct=True,
)
def process_and_analyze_data(csv_file):
# Read CSV file
csv_data = pd.read_csv(csv_file)
# Logging to check data loading
print(f"CSV Data Loaded: {csv_data.head()}")
# Count of responses in each category of 'Business Unit'
business_unit_counts = csv_data['Business Unit'].value_counts()
# Plotting the count of responses in each 'Business Unit' category
plt.figure(figsize=(10, 6))
business_unit_counts.plot(kind='bar')
plt.title('Count of Responses by Business Unit')
plt.xlabel('Business Unit')
plt.ylabel('Count')
plt.xticks(rotation=45)
plt.tight_layout()
# Save the plot to a BytesIO object
image_buffer = BytesIO()
plt.savefig(image_buffer, format='png')
image_buffer.seek(0)
return image_buffer
# Function to handle message events
@cl.on_message
async def handle_message(message: cl.Message):
global got_csv, agent
# Retrieve the CSV file from the message
csv_file = next(
(
io.BytesIO(file.content)
for file in message.elements or []
if file.mime and "csv" in file.mime
),
None,
)
# Logging to check file retrieval
print(f"CSV File: {csv_file}")
if csv_file:
got_csv = True
try:
image_buffer = find_most_valuable_feature(csv_file)
# Get bytes data from BytesIO object and send the image data
image_data = image_buffer.getvalue()
name = "chart"
cl.user_session.set(name, image_data)
cl.user_session.set("generated_image", name)
await cl.Message(content="Based on the people who increased usage, here are the most valuable features...").send()
generated_image = cl.user_session.get(name)
agent = cl.user_session.get("agent")
res = await cl.make_async(agent.run)(
input=message.content, callbacks=[cl.LangchainCallbackHandler()]
)
elements = []
actions = []
elements = [
cl.Image(
content=generated_image,
name=name,
display="inline",
size="large"
)
]
await cl.Message(content=name, elements=elements, actions=actions).send()
except Exception as e:
await cl.Message(content=f"An error occurred: {str(e)}").send()
else:
if not got_csv:
await cl.Message(content="Please upload a CSV file.").send()
else:
res = await cl.make_async(agent.run)(
input=message.content, callbacks=[cl.LangchainCallbackHandler()]
)
await cl.Message(content=res).send()
# Run the ChainLit app
if __name__ == "__main__":
cl.run()