File size: 22,971 Bytes
f5e0821
 
 
 
 
 
877eedc
f5e0821
 
fe5cebb
 
 
 
877eedc
db1cbec
f5e0821
fe5cebb
f5e0821
fe5cebb
 
f5e0821
db1cbec
 
 
 
 
 
877eedc
f5e0821
877eedc
f5e0821
db1cbec
 
 
 
 
6b080c6
 
db1cbec
 
 
 
 
 
6b080c6
f5e0821
fe5cebb
f5e0821
 
 
 
 
 
fe5cebb
f5e0821
 
fe5cebb
f5e0821
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
f5e0821
 
 
 
 
1702ce4
 
 
 
 
 
 
fe5cebb
 
 
1702ce4
fe5cebb
 
 
 
 
 
 
1702ce4
 
 
 
 
 
 
 
 
 
f5e0821
 
 
 
fe5cebb
f5e0821
 
 
 
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73dceb0
8828171
f5e0821
fe5cebb
f5e0821
 
 
09db56d
f5e0821
fe5cebb
f5e0821
 
8828171
f5e0821
 
 
fe5cebb
f5e0821
fe5cebb
db1cbec
 
 
 
 
 
 
 
 
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1cbec
 
 
 
09db56d
db1cbec
 
 
 
 
 
09db56d
 
db1cbec
 
09db56d
db1cbec
09db56d
db1cbec
 
 
 
 
 
 
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
fe5cebb
09db56d
 
 
 
 
 
f5e0821
 
fe5cebb
 
 
 
f5e0821
fe5cebb
f5e0821
fe5cebb
f5e0821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
f5e0821
fe5cebb
 
 
 
 
 
 
 
 
 
 
f5e0821
 
 
 
fe5cebb
 
 
 
 
 
 
09db56d
f5e0821
09db56d
f5e0821
 
fe5cebb
f5e0821
 
 
fe5cebb
 
 
8828171
 
f5e0821
09db56d
f5e0821
 
09db56d
db1cbec
8828171
 
 
f5e0821
 
 
db1cbec
 
f5e0821
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
1702ce4
 
 
f5e0821
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702ce4
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1702ce4
09db56d
 
 
 
 
 
 
 
 
 
1702ce4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
 
 
 
 
 
46c1738
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc

# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])

def clear_gpu_memory():
    """Clear GPU memory cache"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

@spaces.GPU
def load_pipeline():
    """Load the Chronos model with GPU configuration"""
    global pipeline
    try:
        if pipeline is None:
            clear_gpu_memory()
            pipeline = ChronosPipeline.from_pretrained(
                "amazon/chronos-t5-large",
                device_map="auto",  # Let the machine choose the best device
                torch_dtype=torch.float16,  # Use float16 for better memory efficiency
                low_cpu_mem_usage=True
            )
            pipeline.model = pipeline.model.eval()
        return pipeline
    except Exception as e:
        print(f"Error loading pipeline: {str(e)}")
        raise RuntimeError(f"Failed to load model: {str(e)}")

def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
    """
    Fetch historical data using yfinance.
    
    Args:
        symbol (str): The stock symbol (e.g., 'AAPL')
        timeframe (str): The timeframe for data ('1d', '1h', '15m')
        lookback_days (int): Number of days to look back
    
    Returns:
        pd.DataFrame: Historical data with OHLCV and technical indicators
    """
    try:
        # Map timeframe to yfinance interval
        tf_map = {
            "1d": "1d",
            "1h": "1h",
            "15m": "15m"
        }
        interval = tf_map.get(timeframe, "1d")
        
        # Calculate date range
        end_date = datetime.now()
        start_date = end_date - timedelta(days=lookback_days)
        
        # Fetch data using yfinance
        ticker = yf.Ticker(symbol)
        df = ticker.history(start=start_date, end=end_date, interval=interval)
        
        # Get additional info for structured products
        info = ticker.info
        df['Market_Cap'] = info.get('marketCap', None)
        df['Sector'] = info.get('sector', None)
        df['Industry'] = info.get('industry', None)
        df['Dividend_Yield'] = info.get('dividendYield', None)
        
        # Calculate technical indicators
        df['SMA_20'] = df['Close'].rolling(window=20).mean()
        df['SMA_50'] = df['Close'].rolling(window=50).mean()
        df['SMA_200'] = df['Close'].rolling(window=200).mean()
        df['RSI'] = calculate_rsi(df['Close'])
        df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
        df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
        
        # Calculate returns and volatility
        df['Returns'] = df['Close'].pct_change()
        df['Volatility'] = df['Returns'].rolling(window=20).std()
        df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)  # Annualized volatility
        
        # Calculate drawdown metrics
        df['Rolling_Max'] = df['Close'].rolling(window=252, min_periods=1).max()
        df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
        df['Max_Drawdown'] = df['Drawdown'].rolling(window=252, min_periods=1).min()
        
        # Calculate liquidity metrics
        df['Avg_Daily_Volume'] = df['Volume'].rolling(window=20).mean()
        df['Volume_Volatility'] = df['Volume'].rolling(window=20).std()
        
        # Drop NaN values
        df = df.dropna()
        
        return df
        
    except Exception as e:
        raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")

def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
    """Calculate Relative Strength Index"""
    delta = prices.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    return 100 - (100 / (1 + rs))

def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
    """Calculate MACD and Signal line"""
    exp1 = prices.ewm(span=fast, adjust=False).mean()
    exp2 = prices.ewm(span=slow, adjust=False).mean()
    macd = exp1 - exp2
    signal_line = macd.ewm(span=signal, adjust=False).mean()
    return macd, signal_line

def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
    """Calculate Bollinger Bands"""
    middle_band = prices.rolling(window=period).mean()
    std = prices.rolling(window=period).std()
    upper_band = middle_band + (std * std_dev)
    lower_band = middle_band - (std * std_dev)
    return upper_band, middle_band, lower_band

@spaces.GPU
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
    """
    Make prediction using selected strategy.
    
    Args:
        symbol (str): Stock symbol
        timeframe (str): Data timeframe ('1d', '1h', '15m')
        prediction_days (int): Number of days to predict
        strategy (str): Prediction strategy to use
    
    Returns:
        Tuple[Dict, go.Figure]: Trading signals and visualization plot
    """
    try:
        # Get historical data
        df = get_historical_data(symbol, timeframe)
        
        if strategy == "chronos":
            try:
                # Prepare data for Chronos
                returns = df['Returns'].values
                normalized_returns = (returns - returns.mean()) / returns.std()
                context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
                
                # Make prediction with GPU acceleration
                pipe = load_pipeline()
                
                # Adjust prediction length based on timeframe
                if timeframe == "1d":
                    max_prediction_length = 64  # Maximum 64 days for daily data
                elif timeframe == "1h":
                    max_prediction_length = 168  # Maximum 7 days (168 hours) for hourly data
                else:  # 15m
                    max_prediction_length = 192  # Maximum 2 days (192 15-minute intervals) for 15m data
                
                # Convert prediction_days to appropriate intervals
                if timeframe == "1d":
                    actual_prediction_length = min(prediction_days, max_prediction_length)
                elif timeframe == "1h":
                    actual_prediction_length = min(prediction_days * 24, max_prediction_length)
                else:  # 15m
                    actual_prediction_length = min(prediction_days * 96, max_prediction_length)  # 96 intervals per day
                
                with torch.inference_mode():
                    prediction = pipe.predict(
                        context=context,
                        prediction_length=actual_prediction_length,
                        num_samples=100 
                    ).detach().cpu().numpy()
                
                mean_pred = prediction.mean(axis=0)
                std_pred = prediction.std(axis=0)
                
                # If we had to limit the prediction length, extend the prediction
                if actual_prediction_length < prediction_days:
                    last_pred = mean_pred[-1]
                    last_std = std_pred[-1]
                    extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
                    mean_pred = np.concatenate([mean_pred, extension])
                    std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
                
            except Exception as e:
                print(f"Chronos prediction failed: {str(e)}")
                print("Falling back to technical analysis")
                strategy = "technical"
        
        if strategy == "technical":
            # Technical analysis based prediction
            last_price = df['Close'].iloc[-1]
            rsi = df['RSI'].iloc[-1]
            macd = df['MACD'].iloc[-1]
            macd_signal = df['MACD_Signal'].iloc[-1]
            
            # Simple prediction based on technical indicators
            trend = 1 if (rsi > 50 and macd > macd_signal) else -1
            volatility = df['Volatility'].iloc[-1]
            
            # Generate predictions
            mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
            std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
        
        # Create prediction dates based on timeframe
        last_date = df.index[-1]
        if timeframe == "1d":
            pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
        elif timeframe == "1h":
            pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
        else:  # 15m
            pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
        
        # Create visualization
        fig = make_subplots(rows=3, cols=1, 
                           shared_xaxes=True,
                           vertical_spacing=0.05,
                           subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
        
        # Add historical price
        fig.add_trace(
            go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
                      line=dict(color='blue')),
            row=1, col=1
        )
        
        # Add prediction mean
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
                      line=dict(color='red')),
            row=1, col=1
        )
        
        # Add confidence intervals
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
                      fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
                      name='Upper Bound'),
            row=1, col=1
        )
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
                      fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
                      name='Lower Bound'),
            row=1, col=1
        )
        
        # Add technical indicators
        fig.add_trace(
            go.Scatter(x=df.index, y=df['RSI'], name='RSI',
                      line=dict(color='purple')),
            row=2, col=1
        )
        fig.add_trace(
            go.Scatter(x=df.index, y=df['MACD'], name='MACD',
                      line=dict(color='orange')),
            row=2, col=1
        )
        fig.add_trace(
            go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
                      line=dict(color='green')),
            row=2, col=1
        )
        
        # Add volume
        fig.add_trace(
            go.Bar(x=df.index, y=df['Volume'], name='Volume',
                  marker_color='gray'),
            row=3, col=1
        )
        
        # Update layout with timeframe-specific settings
        fig.update_layout(
            title=f'{symbol} {timeframe} Analysis and Prediction',
            xaxis_title='Date',
            yaxis_title='Price',
            height=1000,
            showlegend=True
        )
        
        # Calculate trading signals
        signals = calculate_trading_signals(df)
        
        # Add prediction information to signals
        signals.update({
            "symbol": symbol,
            "timeframe": timeframe,
            "prediction": mean_pred.tolist(),
            "confidence": std_pred.tolist(),
            "dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
            "strategy_used": strategy
        })
        
        return signals, fig
        
    except Exception as e:
        raise Exception(f"Prediction error: {str(e)}")
    finally:
        clear_gpu_memory()

def calculate_trading_signals(df: pd.DataFrame) -> Dict:
    """Calculate trading signals based on technical indicators"""
    signals = {
        "RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
        "MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
        "Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
        "SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
    }
    
    # Calculate overall signal
    buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
    sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
    
    if buy_signals > sell_signals:
        signals["Overall"] = "Buy"
    elif sell_signals > buy_signals:
        signals["Overall"] = "Sell"
    else:
        signals["Overall"] = "Hold"
    
    return signals

def create_interface():
    """Create the Gradio interface with separate tabs for different timeframes"""
    with gr.Blocks(title="Structured Product Analysis") as demo:
        gr.Markdown("# Structured Product Analysis")
        gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
        
        with gr.Tabs() as tabs:
            # Daily Analysis Tab
            with gr.TabItem("Daily Analysis"):
                with gr.Row():
                    with gr.Column():
                        daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        daily_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=365,
                            value=30,
                            step=1,
                            label="Days to Predict"
                        )
                        daily_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=3650,
                            value=365,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        daily_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        daily_predict_btn = gr.Button("Analyze Stock")
                    
                    with gr.Column():
                        daily_plot = gr.Plot(label="Analysis and Prediction")
                        daily_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        daily_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Risk Analysis")
                        daily_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Sector Analysis")
                        daily_sector_metrics = gr.JSON(label="Sector Metrics")
            
            # Hourly Analysis Tab
            with gr.TabItem("Hourly Analysis"):
                with gr.Row():
                    with gr.Column():
                        hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        hourly_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=7,  # Limited to 7 days for hourly predictions
                            value=3,
                            step=1,
                            label="Days to Predict"
                        )
                        hourly_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=30,  # Limited to 30 days for hourly data
                            value=14,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        hourly_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        hourly_predict_btn = gr.Button("Analyze Stock")
                    
                    with gr.Column():
                        hourly_plot = gr.Plot(label="Analysis and Prediction")
                        hourly_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        hourly_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Risk Analysis")
                        hourly_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Sector Analysis")
                        hourly_sector_metrics = gr.JSON(label="Sector Metrics")
            
            # 15-Minute Analysis Tab
            with gr.TabItem("15-Minute Analysis"):
                with gr.Row():
                    with gr.Column():
                        min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        min15_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=2,  # Limited to 2 days for 15-minute predictions
                            value=1,
                            step=1,
                            label="Days to Predict"
                        )
                        min15_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=5,  # Limited to 5 days for 15-minute data
                            value=3,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        min15_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        min15_predict_btn = gr.Button("Analyze Stock")
                    
                    with gr.Column():
                        min15_plot = gr.Plot(label="Analysis and Prediction")
                        min15_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        min15_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Risk Analysis")
                        min15_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Sector Analysis")
                        min15_sector_metrics = gr.JSON(label="Sector Metrics")
        
        def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
            signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
            
            # Get historical data for additional metrics
            df = get_historical_data(symbol, timeframe, lookback_days)
            
            # Calculate structured product metrics
            product_metrics = {
                "Market_Cap": df['Market_Cap'].iloc[-1],
                "Sector": df['Sector'].iloc[-1],
                "Industry": df['Industry'].iloc[-1],
                "Dividend_Yield": df['Dividend_Yield'].iloc[-1],
                "Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
                "Volume_Volatility": df['Volume_Volatility'].iloc[-1]
            }
            
            # Calculate risk metrics
            risk_metrics = {
                "Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
                "Max_Drawdown": df['Max_Drawdown'].iloc[-1],
                "Current_Drawdown": df['Drawdown'].iloc[-1],
                "Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
                "Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
            }
            
            # Calculate sector metrics
            sector_metrics = {
                "Sector": df['Sector'].iloc[-1],
                "Industry": df['Industry'].iloc[-1],
                "Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
                "Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
            }
            
            return signals, fig, product_metrics, risk_metrics, sector_metrics
        
        # Daily analysis button click
        daily_predict_btn.click(
            fn=lambda s, pd, ld, st: analyze_stock(s, "1d", pd, ld, st),
            inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
            outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
        )
        
        # Hourly analysis button click
        hourly_predict_btn.click(
            fn=lambda s, pd, ld, st: analyze_stock(s, "1h", pd, ld, st),
            inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
            outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
        )
        
        # 15-minute analysis button click
        min15_predict_btn.click(
            fn=lambda s, pd, ld, st: analyze_stock(s, "15m", pd, ld, st),
            inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
            outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(share=True, ssr_mode=False, mcp_server=True)