Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,971 Bytes
f5e0821 877eedc f5e0821 fe5cebb 877eedc db1cbec f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 db1cbec 877eedc f5e0821 877eedc f5e0821 db1cbec 6b080c6 db1cbec 6b080c6 f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 1702ce4 fe5cebb 1702ce4 fe5cebb 1702ce4 f5e0821 fe5cebb f5e0821 fe5cebb 73dceb0 8828171 f5e0821 fe5cebb f5e0821 09db56d f5e0821 fe5cebb f5e0821 8828171 f5e0821 fe5cebb f5e0821 fe5cebb db1cbec 09db56d db1cbec 09db56d db1cbec 09db56d db1cbec 09db56d db1cbec 09db56d db1cbec fe5cebb f5e0821 09db56d fe5cebb 09db56d f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 fe5cebb f5e0821 fe5cebb 09db56d f5e0821 09db56d f5e0821 fe5cebb f5e0821 fe5cebb 8828171 f5e0821 09db56d f5e0821 09db56d db1cbec 8828171 f5e0821 db1cbec f5e0821 fe5cebb f5e0821 09db56d 1702ce4 f5e0821 09db56d f5e0821 09db56d 1702ce4 09db56d 1702ce4 09db56d 1702ce4 09db56d f5e0821 46c1738 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc
# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU
def load_pipeline():
"""Load the Chronos model with GPU configuration"""
global pipeline
try:
if pipeline is None:
clear_gpu_memory()
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-large",
device_map="auto", # Let the machine choose the best device
torch_dtype=torch.float16, # Use float16 for better memory efficiency
low_cpu_mem_usage=True
)
pipeline.model = pipeline.model.eval()
return pipeline
except Exception as e:
print(f"Error loading pipeline: {str(e)}")
raise RuntimeError(f"Failed to load model: {str(e)}")
def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
"""
Fetch historical data using yfinance.
Args:
symbol (str): The stock symbol (e.g., 'AAPL')
timeframe (str): The timeframe for data ('1d', '1h', '15m')
lookback_days (int): Number of days to look back
Returns:
pd.DataFrame: Historical data with OHLCV and technical indicators
"""
try:
# Map timeframe to yfinance interval
tf_map = {
"1d": "1d",
"1h": "1h",
"15m": "15m"
}
interval = tf_map.get(timeframe, "1d")
# Calculate date range
end_date = datetime.now()
start_date = end_date - timedelta(days=lookback_days)
# Fetch data using yfinance
ticker = yf.Ticker(symbol)
df = ticker.history(start=start_date, end=end_date, interval=interval)
# Get additional info for structured products
info = ticker.info
df['Market_Cap'] = info.get('marketCap', None)
df['Sector'] = info.get('sector', None)
df['Industry'] = info.get('industry', None)
df['Dividend_Yield'] = info.get('dividendYield', None)
# Calculate technical indicators
df['SMA_20'] = df['Close'].rolling(window=20).mean()
df['SMA_50'] = df['Close'].rolling(window=50).mean()
df['SMA_200'] = df['Close'].rolling(window=200).mean()
df['RSI'] = calculate_rsi(df['Close'])
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
# Calculate returns and volatility
df['Returns'] = df['Close'].pct_change()
df['Volatility'] = df['Returns'].rolling(window=20).std()
df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252) # Annualized volatility
# Calculate drawdown metrics
df['Rolling_Max'] = df['Close'].rolling(window=252, min_periods=1).max()
df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
df['Max_Drawdown'] = df['Drawdown'].rolling(window=252, min_periods=1).min()
# Calculate liquidity metrics
df['Avg_Daily_Volume'] = df['Volume'].rolling(window=20).mean()
df['Volume_Volatility'] = df['Volume'].rolling(window=20).std()
# Drop NaN values
df = df.dropna()
return df
except Exception as e:
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
"""Calculate Relative Strength Index"""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
"""Calculate MACD and Signal line"""
exp1 = prices.ewm(span=fast, adjust=False).mean()
exp2 = prices.ewm(span=slow, adjust=False).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal, adjust=False).mean()
return macd, signal_line
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
"""Calculate Bollinger Bands"""
middle_band = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = middle_band + (std * std_dev)
lower_band = middle_band - (std * std_dev)
return upper_band, middle_band, lower_band
@spaces.GPU
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
"""
Make prediction using selected strategy.
Args:
symbol (str): Stock symbol
timeframe (str): Data timeframe ('1d', '1h', '15m')
prediction_days (int): Number of days to predict
strategy (str): Prediction strategy to use
Returns:
Tuple[Dict, go.Figure]: Trading signals and visualization plot
"""
try:
# Get historical data
df = get_historical_data(symbol, timeframe)
if strategy == "chronos":
try:
# Prepare data for Chronos
returns = df['Returns'].values
normalized_returns = (returns - returns.mean()) / returns.std()
context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
# Make prediction with GPU acceleration
pipe = load_pipeline()
# Adjust prediction length based on timeframe
if timeframe == "1d":
max_prediction_length = 64 # Maximum 64 days for daily data
elif timeframe == "1h":
max_prediction_length = 168 # Maximum 7 days (168 hours) for hourly data
else: # 15m
max_prediction_length = 192 # Maximum 2 days (192 15-minute intervals) for 15m data
# Convert prediction_days to appropriate intervals
if timeframe == "1d":
actual_prediction_length = min(prediction_days, max_prediction_length)
elif timeframe == "1h":
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
else: # 15m
actual_prediction_length = min(prediction_days * 96, max_prediction_length) # 96 intervals per day
with torch.inference_mode():
prediction = pipe.predict(
context=context,
prediction_length=actual_prediction_length,
num_samples=100
).detach().cpu().numpy()
mean_pred = prediction.mean(axis=0)
std_pred = prediction.std(axis=0)
# If we had to limit the prediction length, extend the prediction
if actual_prediction_length < prediction_days:
last_pred = mean_pred[-1]
last_std = std_pred[-1]
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
mean_pred = np.concatenate([mean_pred, extension])
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
except Exception as e:
print(f"Chronos prediction failed: {str(e)}")
print("Falling back to technical analysis")
strategy = "technical"
if strategy == "technical":
# Technical analysis based prediction
last_price = df['Close'].iloc[-1]
rsi = df['RSI'].iloc[-1]
macd = df['MACD'].iloc[-1]
macd_signal = df['MACD_Signal'].iloc[-1]
# Simple prediction based on technical indicators
trend = 1 if (rsi > 50 and macd > macd_signal) else -1
volatility = df['Volatility'].iloc[-1]
# Generate predictions
mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
# Create prediction dates based on timeframe
last_date = df.index[-1]
if timeframe == "1d":
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
elif timeframe == "1h":
pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
else: # 15m
pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
# Create visualization
fig = make_subplots(rows=3, cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
# Add historical price
fig.add_trace(
go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
line=dict(color='blue')),
row=1, col=1
)
# Add prediction mean
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
line=dict(color='red')),
row=1, col=1
)
# Add confidence intervals
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
name='Upper Bound'),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
name='Lower Bound'),
row=1, col=1
)
# Add technical indicators
fig.add_trace(
go.Scatter(x=df.index, y=df['RSI'], name='RSI',
line=dict(color='purple')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD'], name='MACD',
line=dict(color='orange')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
line=dict(color='green')),
row=2, col=1
)
# Add volume
fig.add_trace(
go.Bar(x=df.index, y=df['Volume'], name='Volume',
marker_color='gray'),
row=3, col=1
)
# Update layout with timeframe-specific settings
fig.update_layout(
title=f'{symbol} {timeframe} Analysis and Prediction',
xaxis_title='Date',
yaxis_title='Price',
height=1000,
showlegend=True
)
# Calculate trading signals
signals = calculate_trading_signals(df)
# Add prediction information to signals
signals.update({
"symbol": symbol,
"timeframe": timeframe,
"prediction": mean_pred.tolist(),
"confidence": std_pred.tolist(),
"dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
"strategy_used": strategy
})
return signals, fig
except Exception as e:
raise Exception(f"Prediction error: {str(e)}")
finally:
clear_gpu_memory()
def calculate_trading_signals(df: pd.DataFrame) -> Dict:
"""Calculate trading signals based on technical indicators"""
signals = {
"RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
"MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
"Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
"SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
}
# Calculate overall signal
buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
if buy_signals > sell_signals:
signals["Overall"] = "Buy"
elif sell_signals > buy_signals:
signals["Overall"] = "Sell"
else:
signals["Overall"] = "Hold"
return signals
def create_interface():
"""Create the Gradio interface with separate tabs for different timeframes"""
with gr.Blocks(title="Structured Product Analysis") as demo:
gr.Markdown("# Structured Product Analysis")
gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
with gr.Tabs() as tabs:
# Daily Analysis Tab
with gr.TabItem("Daily Analysis"):
with gr.Row():
with gr.Column():
daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
daily_prediction_days = gr.Slider(
minimum=1,
maximum=365,
value=30,
step=1,
label="Days to Predict"
)
daily_lookback_days = gr.Slider(
minimum=1,
maximum=3650,
value=365,
step=1,
label="Historical Lookback (Days)"
)
daily_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
daily_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
daily_plot = gr.Plot(label="Analysis and Prediction")
daily_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
daily_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
daily_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
daily_sector_metrics = gr.JSON(label="Sector Metrics")
# Hourly Analysis Tab
with gr.TabItem("Hourly Analysis"):
with gr.Row():
with gr.Column():
hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
hourly_prediction_days = gr.Slider(
minimum=1,
maximum=7, # Limited to 7 days for hourly predictions
value=3,
step=1,
label="Days to Predict"
)
hourly_lookback_days = gr.Slider(
minimum=1,
maximum=30, # Limited to 30 days for hourly data
value=14,
step=1,
label="Historical Lookback (Days)"
)
hourly_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
hourly_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
hourly_plot = gr.Plot(label="Analysis and Prediction")
hourly_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
hourly_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
hourly_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
hourly_sector_metrics = gr.JSON(label="Sector Metrics")
# 15-Minute Analysis Tab
with gr.TabItem("15-Minute Analysis"):
with gr.Row():
with gr.Column():
min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
min15_prediction_days = gr.Slider(
minimum=1,
maximum=2, # Limited to 2 days for 15-minute predictions
value=1,
step=1,
label="Days to Predict"
)
min15_lookback_days = gr.Slider(
minimum=1,
maximum=5, # Limited to 5 days for 15-minute data
value=3,
step=1,
label="Historical Lookback (Days)"
)
min15_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
min15_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
min15_plot = gr.Plot(label="Analysis and Prediction")
min15_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
min15_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
min15_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
min15_sector_metrics = gr.JSON(label="Sector Metrics")
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
# Get historical data for additional metrics
df = get_historical_data(symbol, timeframe, lookback_days)
# Calculate structured product metrics
product_metrics = {
"Market_Cap": df['Market_Cap'].iloc[-1],
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Dividend_Yield": df['Dividend_Yield'].iloc[-1],
"Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
"Volume_Volatility": df['Volume_Volatility'].iloc[-1]
}
# Calculate risk metrics
risk_metrics = {
"Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
"Max_Drawdown": df['Max_Drawdown'].iloc[-1],
"Current_Drawdown": df['Drawdown'].iloc[-1],
"Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
"Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
}
# Calculate sector metrics
sector_metrics = {
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
"Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
}
return signals, fig, product_metrics, risk_metrics, sector_metrics
# Daily analysis button click
daily_predict_btn.click(
fn=lambda s, pd, ld, st: analyze_stock(s, "1d", pd, ld, st),
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
)
# Hourly analysis button click
hourly_predict_btn.click(
fn=lambda s, pd, ld, st: analyze_stock(s, "1h", pd, ld, st),
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
)
# 15-minute analysis button click
min15_predict_btn.click(
fn=lambda s, pd, ld, st: analyze_stock(s, "15m", pd, ld, st),
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True, ssr_mode=False, mcp_server=True) |