Tonic's picture
add tabbed interface
09db56d
raw
history blame
23 kB
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc
# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU
def load_pipeline():
"""Load the Chronos model with GPU configuration"""
global pipeline
try:
if pipeline is None:
clear_gpu_memory()
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-large",
device_map="auto", # Let the machine choose the best device
torch_dtype=torch.float16, # Use float16 for better memory efficiency
low_cpu_mem_usage=True
)
pipeline.model = pipeline.model.eval()
return pipeline
except Exception as e:
print(f"Error loading pipeline: {str(e)}")
raise RuntimeError(f"Failed to load model: {str(e)}")
def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
"""
Fetch historical data using yfinance.
Args:
symbol (str): The stock symbol (e.g., 'AAPL')
timeframe (str): The timeframe for data ('1d', '1h', '15m')
lookback_days (int): Number of days to look back
Returns:
pd.DataFrame: Historical data with OHLCV and technical indicators
"""
try:
# Map timeframe to yfinance interval
tf_map = {
"1d": "1d",
"1h": "1h",
"15m": "15m"
}
interval = tf_map.get(timeframe, "1d")
# Calculate date range
end_date = datetime.now()
start_date = end_date - timedelta(days=lookback_days)
# Fetch data using yfinance
ticker = yf.Ticker(symbol)
df = ticker.history(start=start_date, end=end_date, interval=interval)
# Get additional info for structured products
info = ticker.info
df['Market_Cap'] = info.get('marketCap', None)
df['Sector'] = info.get('sector', None)
df['Industry'] = info.get('industry', None)
df['Dividend_Yield'] = info.get('dividendYield', None)
# Calculate technical indicators
df['SMA_20'] = df['Close'].rolling(window=20).mean()
df['SMA_50'] = df['Close'].rolling(window=50).mean()
df['SMA_200'] = df['Close'].rolling(window=200).mean()
df['RSI'] = calculate_rsi(df['Close'])
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
# Calculate returns and volatility
df['Returns'] = df['Close'].pct_change()
df['Volatility'] = df['Returns'].rolling(window=20).std()
df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252) # Annualized volatility
# Calculate drawdown metrics
df['Rolling_Max'] = df['Close'].rolling(window=252, min_periods=1).max()
df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
df['Max_Drawdown'] = df['Drawdown'].rolling(window=252, min_periods=1).min()
# Calculate liquidity metrics
df['Avg_Daily_Volume'] = df['Volume'].rolling(window=20).mean()
df['Volume_Volatility'] = df['Volume'].rolling(window=20).std()
# Drop NaN values
df = df.dropna()
return df
except Exception as e:
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
"""Calculate Relative Strength Index"""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
"""Calculate MACD and Signal line"""
exp1 = prices.ewm(span=fast, adjust=False).mean()
exp2 = prices.ewm(span=slow, adjust=False).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal, adjust=False).mean()
return macd, signal_line
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
"""Calculate Bollinger Bands"""
middle_band = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = middle_band + (std * std_dev)
lower_band = middle_band - (std * std_dev)
return upper_band, middle_band, lower_band
@spaces.GPU
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
"""
Make prediction using selected strategy.
Args:
symbol (str): Stock symbol
timeframe (str): Data timeframe ('1d', '1h', '15m')
prediction_days (int): Number of days to predict
strategy (str): Prediction strategy to use
Returns:
Tuple[Dict, go.Figure]: Trading signals and visualization plot
"""
try:
# Get historical data
df = get_historical_data(symbol, timeframe)
if strategy == "chronos":
try:
# Prepare data for Chronos
returns = df['Returns'].values
normalized_returns = (returns - returns.mean()) / returns.std()
context = torch.tensor(normalized_returns.reshape(-1, 1), dtype=torch.float32)
# Make prediction with GPU acceleration
pipe = load_pipeline()
# Adjust prediction length based on timeframe
if timeframe == "1d":
max_prediction_length = 64 # Maximum 64 days for daily data
elif timeframe == "1h":
max_prediction_length = 168 # Maximum 7 days (168 hours) for hourly data
else: # 15m
max_prediction_length = 192 # Maximum 2 days (192 15-minute intervals) for 15m data
# Convert prediction_days to appropriate intervals
if timeframe == "1d":
actual_prediction_length = min(prediction_days, max_prediction_length)
elif timeframe == "1h":
actual_prediction_length = min(prediction_days * 24, max_prediction_length)
else: # 15m
actual_prediction_length = min(prediction_days * 96, max_prediction_length) # 96 intervals per day
with torch.inference_mode():
prediction = pipe.predict(
context=context,
prediction_length=actual_prediction_length,
num_samples=100
).detach().cpu().numpy()
mean_pred = prediction.mean(axis=0)
std_pred = prediction.std(axis=0)
# If we had to limit the prediction length, extend the prediction
if actual_prediction_length < prediction_days:
last_pred = mean_pred[-1]
last_std = std_pred[-1]
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
mean_pred = np.concatenate([mean_pred, extension])
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
except Exception as e:
print(f"Chronos prediction failed: {str(e)}")
print("Falling back to technical analysis")
strategy = "technical"
if strategy == "technical":
# Technical analysis based prediction
last_price = df['Close'].iloc[-1]
rsi = df['RSI'].iloc[-1]
macd = df['MACD'].iloc[-1]
macd_signal = df['MACD_Signal'].iloc[-1]
# Simple prediction based on technical indicators
trend = 1 if (rsi > 50 and macd > macd_signal) else -1
volatility = df['Volatility'].iloc[-1]
# Generate predictions
mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
# Create prediction dates based on timeframe
last_date = df.index[-1]
if timeframe == "1d":
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
elif timeframe == "1h":
pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
else: # 15m
pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
# Create visualization
fig = make_subplots(rows=3, cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
# Add historical price
fig.add_trace(
go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
line=dict(color='blue')),
row=1, col=1
)
# Add prediction mean
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
line=dict(color='red')),
row=1, col=1
)
# Add confidence intervals
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
name='Upper Bound'),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
name='Lower Bound'),
row=1, col=1
)
# Add technical indicators
fig.add_trace(
go.Scatter(x=df.index, y=df['RSI'], name='RSI',
line=dict(color='purple')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD'], name='MACD',
line=dict(color='orange')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
line=dict(color='green')),
row=2, col=1
)
# Add volume
fig.add_trace(
go.Bar(x=df.index, y=df['Volume'], name='Volume',
marker_color='gray'),
row=3, col=1
)
# Update layout with timeframe-specific settings
fig.update_layout(
title=f'{symbol} {timeframe} Analysis and Prediction',
xaxis_title='Date',
yaxis_title='Price',
height=1000,
showlegend=True
)
# Calculate trading signals
signals = calculate_trading_signals(df)
# Add prediction information to signals
signals.update({
"symbol": symbol,
"timeframe": timeframe,
"prediction": mean_pred.tolist(),
"confidence": std_pred.tolist(),
"dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
"strategy_used": strategy
})
return signals, fig
except Exception as e:
raise Exception(f"Prediction error: {str(e)}")
finally:
clear_gpu_memory()
def calculate_trading_signals(df: pd.DataFrame) -> Dict:
"""Calculate trading signals based on technical indicators"""
signals = {
"RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
"MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
"Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
"SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
}
# Calculate overall signal
buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
if buy_signals > sell_signals:
signals["Overall"] = "Buy"
elif sell_signals > buy_signals:
signals["Overall"] = "Sell"
else:
signals["Overall"] = "Hold"
return signals
def create_interface():
"""Create the Gradio interface with separate tabs for different timeframes"""
with gr.Blocks(title="Structured Product Analysis") as demo:
gr.Markdown("# Structured Product Analysis")
gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
with gr.Tabs() as tabs:
# Daily Analysis Tab
with gr.TabItem("Daily Analysis"):
with gr.Row():
with gr.Column():
daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
daily_prediction_days = gr.Slider(
minimum=1,
maximum=365,
value=30,
step=1,
label="Days to Predict"
)
daily_lookback_days = gr.Slider(
minimum=1,
maximum=3650,
value=365,
step=1,
label="Historical Lookback (Days)"
)
daily_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
daily_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
daily_plot = gr.Plot(label="Analysis and Prediction")
daily_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
daily_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
daily_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
daily_sector_metrics = gr.JSON(label="Sector Metrics")
# Hourly Analysis Tab
with gr.TabItem("Hourly Analysis"):
with gr.Row():
with gr.Column():
hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
hourly_prediction_days = gr.Slider(
minimum=1,
maximum=7, # Limited to 7 days for hourly predictions
value=3,
step=1,
label="Days to Predict"
)
hourly_lookback_days = gr.Slider(
minimum=1,
maximum=30, # Limited to 30 days for hourly data
value=14,
step=1,
label="Historical Lookback (Days)"
)
hourly_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
hourly_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
hourly_plot = gr.Plot(label="Analysis and Prediction")
hourly_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
hourly_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
hourly_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
hourly_sector_metrics = gr.JSON(label="Sector Metrics")
# 15-Minute Analysis Tab
with gr.TabItem("15-Minute Analysis"):
with gr.Row():
with gr.Column():
min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
min15_prediction_days = gr.Slider(
minimum=1,
maximum=2, # Limited to 2 days for 15-minute predictions
value=1,
step=1,
label="Days to Predict"
)
min15_lookback_days = gr.Slider(
minimum=1,
maximum=5, # Limited to 5 days for 15-minute data
value=3,
step=1,
label="Historical Lookback (Days)"
)
min15_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
min15_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
min15_plot = gr.Plot(label="Analysis and Prediction")
min15_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
min15_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
min15_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
min15_sector_metrics = gr.JSON(label="Sector Metrics")
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
# Get historical data for additional metrics
df = get_historical_data(symbol, timeframe, lookback_days)
# Calculate structured product metrics
product_metrics = {
"Market_Cap": df['Market_Cap'].iloc[-1],
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Dividend_Yield": df['Dividend_Yield'].iloc[-1],
"Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
"Volume_Volatility": df['Volume_Volatility'].iloc[-1]
}
# Calculate risk metrics
risk_metrics = {
"Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
"Max_Drawdown": df['Max_Drawdown'].iloc[-1],
"Current_Drawdown": df['Drawdown'].iloc[-1],
"Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
"Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
}
# Calculate sector metrics
sector_metrics = {
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
"Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
}
return signals, fig, product_metrics, risk_metrics, sector_metrics
# Daily analysis button click
daily_predict_btn.click(
fn=lambda s, pd, ld, st: analyze_stock(s, "1d", pd, ld, st),
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
)
# Hourly analysis button click
hourly_predict_btn.click(
fn=lambda s, pd, ld, st: analyze_stock(s, "1h", pd, ld, st),
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
)
# 15-minute analysis button click
min15_predict_btn.click(
fn=lambda s, pd, ld, st: analyze_stock(s, "15m", pd, ld, st),
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True, ssr_mode=False, mcp_server=True)