Tonic's picture
use the MeanScaleUniformBins tokenizer correctly
0bddd1c
raw
history blame
45.5 kB
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc
import pytz
import time
import random
# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])
def retry_yfinance_request(func, max_retries=3, initial_delay=1):
"""
Retry mechanism for yfinance requests with exponential backoff.
Args:
func: Function to retry
max_retries: Maximum number of retry attempts
initial_delay: Initial delay in seconds before first retry
Returns:
Result of the function call if successful
"""
for attempt in range(max_retries):
try:
return func()
except Exception as e:
if "401" in str(e) and attempt < max_retries - 1:
# Calculate delay with exponential backoff and jitter
delay = initial_delay * (2 ** attempt) + random.uniform(0, 1)
time.sleep(delay)
continue
raise e
def clear_gpu_memory():
"""Clear GPU memory cache"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU()
def load_pipeline():
"""Load the Chronos model without GPU configuration"""
global pipeline
try:
if pipeline is None:
clear_gpu_memory()
print("Loading Chronos model...")
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-large",
device_map="cuda", # Force CUDA device mapping
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
use_safetensors=True
)
# Set model to evaluation mode
pipeline.model = pipeline.model.eval()
# Disable gradient computation
for param in pipeline.model.parameters():
param.requires_grad = False
print("Chronos model loaded successfully")
return pipeline
except Exception as e:
print(f"Error loading pipeline: {str(e)}")
print(f"Error type: {type(e)}")
print(f"Error details: {str(e)}")
raise RuntimeError(f"Failed to load model: {str(e)}")
def is_market_open() -> bool:
"""Check if the market is currently open"""
now = datetime.now()
# Check if it's a weekday (0 = Monday, 6 = Sunday)
if now.weekday() >= 5: # Saturday or Sunday
return False
# Check if it's during market hours (9:30 AM - 4:00 PM ET)
et_time = now.astimezone(pytz.timezone('US/Eastern'))
market_open = et_time.replace(hour=9, minute=30, second=0, microsecond=0)
market_close = et_time.replace(hour=16, minute=0, second=0, microsecond=0)
return market_open <= et_time <= market_close
def get_next_trading_day() -> datetime:
"""Get the next trading day"""
now = datetime.now()
next_day = now + timedelta(days=1)
# Skip weekends
while next_day.weekday() >= 5: # Saturday or Sunday
next_day += timedelta(days=1)
return next_day
def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
"""
Fetch historical data using yfinance.
Args:
symbol (str): The stock symbol (e.g., 'AAPL')
timeframe (str): The timeframe for data ('1d', '1h', '15m')
lookback_days (int): Number of days to look back
Returns:
pd.DataFrame: Historical data with OHLCV and technical indicators
"""
try:
# Check if market is open for intraday data
if timeframe in ["1h", "15m"] and not is_market_open():
next_trading_day = get_next_trading_day()
raise Exception(f"Market is currently closed. Next trading day is {next_trading_day.strftime('%Y-%m-%d')}")
# Map timeframe to yfinance interval and adjust lookback period
tf_map = {
"1d": "1d",
"1h": "1h",
"15m": "15m"
}
interval = tf_map.get(timeframe, "1d")
# Adjust lookback period based on timeframe
if timeframe == "1h":
lookback_days = min(lookback_days, 30) # Yahoo limits hourly data to 30 days
elif timeframe == "15m":
lookback_days = min(lookback_days, 5) # Yahoo limits 15m data to 5 days
# Calculate date range
end_date = datetime.now()
start_date = end_date - timedelta(days=lookback_days)
# Fetch data using yfinance with retry mechanism
ticker = yf.Ticker(symbol)
def fetch_history():
return ticker.history(start=start_date, end=end_date, interval=interval)
df = retry_yfinance_request(fetch_history)
if df.empty:
raise Exception(f"No data available for {symbol} in {timeframe} timeframe")
# Ensure all required columns are present and numeric
required_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
for col in required_columns:
if col not in df.columns:
raise Exception(f"Missing required column: {col}")
df[col] = pd.to_numeric(df[col], errors='coerce')
# Get additional info for structured products with retry mechanism
def fetch_info():
info = ticker.info
if info is None:
raise Exception(f"Could not fetch company info for {symbol}")
return info
try:
info = retry_yfinance_request(fetch_info)
df['Market_Cap'] = float(info.get('marketCap', 0))
df['Sector'] = info.get('sector', 'Unknown')
df['Industry'] = info.get('industry', 'Unknown')
df['Dividend_Yield'] = float(info.get('dividendYield', 0))
except Exception as e:
print(f"Warning: Could not fetch company info for {symbol}: {str(e)}")
# Set default values for missing info
df['Market_Cap'] = 0.0
df['Sector'] = 'Unknown'
df['Industry'] = 'Unknown'
df['Dividend_Yield'] = 0.0
# Calculate technical indicators with adjusted windows based on timeframe
if timeframe == "1d":
sma_window_20 = 20
sma_window_50 = 50
sma_window_200 = 200
vol_window = 20
elif timeframe == "1h":
sma_window_20 = 20 * 6 # 5 trading days
sma_window_50 = 50 * 6 # ~10 trading days
sma_window_200 = 200 * 6 # ~40 trading days
vol_window = 20 * 6
else: # 15m
sma_window_20 = 20 * 24 # 5 trading days
sma_window_50 = 50 * 24 # ~10 trading days
sma_window_200 = 200 * 24 # ~40 trading days
vol_window = 20 * 24
# Calculate technical indicators
df['SMA_20'] = df['Close'].rolling(window=sma_window_20, min_periods=1).mean()
df['SMA_50'] = df['Close'].rolling(window=sma_window_50, min_periods=1).mean()
df['SMA_200'] = df['Close'].rolling(window=sma_window_200, min_periods=1).mean()
df['RSI'] = calculate_rsi(df['Close'])
df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
# Calculate returns and volatility
df['Returns'] = df['Close'].pct_change()
df['Volatility'] = df['Returns'].rolling(window=vol_window, min_periods=1).std()
df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)
# Calculate drawdown metrics
df['Rolling_Max'] = df['Close'].rolling(window=len(df), min_periods=1).max()
df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
df['Max_Drawdown'] = df['Drawdown'].rolling(window=len(df), min_periods=1).min()
# Calculate liquidity metrics
df['Avg_Daily_Volume'] = df['Volume'].rolling(window=vol_window, min_periods=1).mean()
df['Volume_Volatility'] = df['Volume'].rolling(window=vol_window, min_periods=1).std()
# Fill NaN values using forward fill then backward fill
df = df.ffill().bfill()
# Ensure we have enough data points
min_required_points = 64 # Minimum required for Chronos
if len(df) < min_required_points:
# Try to fetch more historical data with retry mechanism
extended_start_date = start_date - timedelta(days=min_required_points - len(df))
def fetch_extended_history():
return ticker.history(start=extended_start_date, end=start_date, interval=interval)
extended_df = retry_yfinance_request(fetch_extended_history)
if not extended_df.empty:
df = pd.concat([extended_df, df])
df = df.ffill().bfill()
if len(df) < 2:
raise Exception(f"Insufficient data points for {symbol} in {timeframe} timeframe")
# Final check for any remaining None values
df = df.fillna(0)
return df
except Exception as e:
raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")
def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
"""Calculate Relative Strength Index"""
# Handle None values by forward filling
prices = prices.ffill().bfill()
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
return 100 - (100 / (1 + rs))
def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
"""Calculate MACD and Signal line"""
# Handle None values by forward filling
prices = prices.ffill().bfill()
exp1 = prices.ewm(span=fast, adjust=False).mean()
exp2 = prices.ewm(span=slow, adjust=False).mean()
macd = exp1 - exp2
signal_line = macd.ewm(span=signal, adjust=False).mean()
return macd, signal_line
def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
"""Calculate Bollinger Bands"""
# Handle None values by forward filling
prices = prices.ffill().bfill()
middle_band = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper_band = middle_band + (std * std_dev)
lower_band = middle_band - (std * std_dev)
return upper_band, middle_band, lower_band
@spaces.GPU(duration=180)
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
"""
Make prediction using selected strategy with ZeroGPU.
Args:
symbol (str): Stock symbol
timeframe (str): Data timeframe ('1d', '1h', '15m')
prediction_days (int): Number of days to predict
strategy (str): Prediction strategy to use
Returns:
Tuple[Dict, go.Figure]: Trading signals and visualization plot
"""
try:
# Get historical data
df = get_historical_data(symbol, timeframe)
if strategy == "chronos":
try:
# Prepare data for Chronos
prices = df['Close'].values
normalized_prices = scaler.fit_transform(prices.reshape(-1, 1)).flatten()
# Ensure we have enough data points
min_data_points = 64
if len(normalized_prices) < min_data_points:
padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
normalized_prices = np.concatenate([padding, normalized_prices])
elif len(normalized_prices) > min_data_points:
normalized_prices = normalized_prices[-min_data_points:]
# Load pipeline and move to GPU
pipe = load_pipeline()
# Get the model's device and dtype
device = torch.device("cuda:0") # Force CUDA device
dtype = torch.float16 # Force float16
print(f"Model device: {device}")
print(f"Model dtype: {dtype}")
# Convert to tensor and ensure proper shape and device
context = torch.tensor(normalized_prices, dtype=dtype, device=device)
# Adjust prediction length based on timeframe
if timeframe == "1d":
max_prediction_length = 64
elif timeframe == "1h":
max_prediction_length = 168
else: # 15m
max_prediction_length = 192
actual_prediction_length = min(prediction_days, max_prediction_length) if timeframe == "1d" else \
min(prediction_days * 24, max_prediction_length) if timeframe == "1h" else \
min(prediction_days * 96, max_prediction_length)
actual_prediction_length = max(1, actual_prediction_length)
# Use predict_quantiles with proper formatting
with torch.amp.autocast('cuda'):
# Ensure all inputs are on GPU
context = context.to(device)
# Move quantile levels to GPU
quantile_levels = torch.tensor([0.1, 0.5, 0.9], device=device, dtype=dtype)
# Ensure prediction length is on GPU
prediction_length = torch.tensor(actual_prediction_length, device=device, dtype=torch.long)
# Force all model components to GPU
pipe.model = pipe.model.to(device)
# Move model to evaluation mode
pipe.model.eval()
# Ensure context is properly shaped and on GPU
if len(context.shape) == 1:
context = context.unsqueeze(0)
context = context.to(device)
# Move all model parameters and buffers to GPU
for param in pipe.model.parameters():
param.data = param.data.to(device)
for buffer in pipe.model.buffers():
buffer.data = buffer.data.to(device)
# Move all model submodules to GPU
for module in pipe.model.modules():
if hasattr(module, 'to'):
module.to(device)
# Move all model attributes to GPU
for name, value in pipe.model.__dict__.items():
if isinstance(value, torch.Tensor):
pipe.model.__dict__[name] = value.to(device)
# Move all model config tensors to GPU
if hasattr(pipe.model, 'config'):
for key, value in pipe.model.config.__dict__.items():
if isinstance(value, torch.Tensor):
setattr(pipe.model.config, key, value.to(device))
# Move all pipeline tensors to GPU
for name, value in pipe.__dict__.items():
if isinstance(value, torch.Tensor):
setattr(pipe, name, value.to(device))
# Ensure all model states are on GPU
if hasattr(pipe.model, 'state_dict'):
state_dict = pipe.model.state_dict()
for key in state_dict:
if isinstance(state_dict[key], torch.Tensor):
state_dict[key] = state_dict[key].to(device)
pipe.model.load_state_dict(state_dict)
# Move any additional components to GPU
if hasattr(pipe, 'tokenizer'):
# Move tokenizer to GPU if it supports it
if hasattr(pipe.tokenizer, 'to'):
pipe.tokenizer = pipe.tokenizer.to(device)
# Move all tokenizer tensors to GPU
for name, value in pipe.tokenizer.__dict__.items():
if isinstance(value, torch.Tensor):
setattr(pipe.tokenizer, name, value.to(device))
# Handle MeanScaleUniformBins specific attributes
if hasattr(pipe.tokenizer, 'bins'):
if isinstance(pipe.tokenizer.bins, torch.Tensor):
pipe.tokenizer.bins = pipe.tokenizer.bins.to(device)
if hasattr(pipe.tokenizer, 'scale'):
if isinstance(pipe.tokenizer.scale, torch.Tensor):
pipe.tokenizer.scale = pipe.tokenizer.scale.to(device)
if hasattr(pipe.tokenizer, 'mean'):
if isinstance(pipe.tokenizer.mean, torch.Tensor):
pipe.tokenizer.mean = pipe.tokenizer.mean.to(device)
# Move any additional tensors in the tokenizer's attributes to GPU
for name, value in pipe.tokenizer.__dict__.items():
if isinstance(value, torch.Tensor):
pipe.tokenizer.__dict__[name] = value.to(device)
# Remove the EOS token handling since MeanScaleUniformBins doesn't use it
if hasattr(pipe.tokenizer, '_append_eos_token'):
# Create a wrapper that just returns the input tensors
def wrapped_append_eos(token_ids, attention_mask):
return token_ids, attention_mask
pipe.tokenizer._append_eos_token = wrapped_append_eos
# Force synchronization again to ensure all tensors are on GPU
torch.cuda.synchronize()
# Ensure all model components are in eval mode
pipe.model.eval()
# Move any additional tensors in the model's config to GPU
if hasattr(pipe.model, 'config'):
for key, value in pipe.model.config.__dict__.items():
if isinstance(value, torch.Tensor):
setattr(pipe.model.config, key, value.to(device))
# Move any additional tensors in the model's state dict to GPU
if hasattr(pipe.model, 'state_dict'):
state_dict = pipe.model.state_dict()
for key in state_dict:
if isinstance(state_dict[key], torch.Tensor):
state_dict[key] = state_dict[key].to(device)
pipe.model.load_state_dict(state_dict)
# Move any additional tensors in the model's buffers to GPU
for name, buffer in pipe.model.named_buffers():
if buffer is not None:
pipe.model.register_buffer(name, buffer.to(device))
# Move any additional tensors in the model's parameters to GPU
for name, param in pipe.model.named_parameters():
if param is not None:
param.data = param.data.to(device)
# Move any additional tensors in the model's attributes to GPU
for name, value in pipe.model.__dict__.items():
if isinstance(value, torch.Tensor):
pipe.model.__dict__[name] = value.to(device)
# Move any additional tensors in the model's modules to GPU
for name, module in pipe.model.named_modules():
if hasattr(module, 'to'):
module.to(device)
# Move any tensors in the module's __dict__
for key, value in module.__dict__.items():
if isinstance(value, torch.Tensor):
setattr(module, key, value.to(device))
# Force synchronization again to ensure all tensors are on GPU
torch.cuda.synchronize()
# Ensure tokenizer is on GPU and all its tensors are on GPU
if hasattr(pipe, 'tokenizer'):
# Move tokenizer to GPU if it supports it
if hasattr(pipe.tokenizer, 'to'):
pipe.tokenizer = pipe.tokenizer.to(device)
# Move all tokenizer tensors to GPU
for name, value in pipe.tokenizer.__dict__.items():
if isinstance(value, torch.Tensor):
setattr(pipe.tokenizer, name, value.to(device))
# Handle MeanScaleUniformBins specific attributes
if hasattr(pipe.tokenizer, 'bins'):
if isinstance(pipe.tokenizer.bins, torch.Tensor):
pipe.tokenizer.bins = pipe.tokenizer.bins.to(device)
if hasattr(pipe.tokenizer, 'scale'):
if isinstance(pipe.tokenizer.scale, torch.Tensor):
pipe.tokenizer.scale = pipe.tokenizer.scale.to(device)
if hasattr(pipe.tokenizer, 'mean'):
if isinstance(pipe.tokenizer.mean, torch.Tensor):
pipe.tokenizer.mean = pipe.tokenizer.mean.to(device)
# Move any additional tensors in the tokenizer's attributes to GPU
for name, value in pipe.tokenizer.__dict__.items():
if isinstance(value, torch.Tensor):
pipe.tokenizer.__dict__[name] = value.to(device)
# Force synchronization again to ensure all tensors are on GPU
torch.cuda.synchronize()
# Make prediction
quantiles, mean = pipe.predict_quantiles(
context=context,
prediction_length=actual_prediction_length,
quantile_levels=[0.1, 0.5, 0.9]
)
if quantiles is None or mean is None:
raise ValueError("Chronos returned empty prediction")
print(f"Quantiles shape: {quantiles.shape}, Mean shape: {mean.shape}")
# Convert to numpy arrays
quantiles = quantiles.detach().cpu().numpy()
mean = mean.detach().cpu().numpy()
# Denormalize predictions
mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
# Calculate standard deviation from quantiles
std_pred = (upper_bound - lower_bound) / (2 * 1.645)
# If we had to limit the prediction length, extend the prediction
if actual_prediction_length < prediction_days:
last_pred = mean_pred[-1]
last_std = std_pred[-1]
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
mean_pred = np.concatenate([mean_pred, extension])
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
except Exception as e:
print(f"Chronos prediction error: {str(e)}")
print(f"Error type: {type(e)}")
print(f"Error details: {str(e)}")
raise
if strategy == "technical":
# Technical analysis based prediction
last_price = df['Close'].iloc[-1]
rsi = df['RSI'].iloc[-1]
macd = df['MACD'].iloc[-1]
macd_signal = df['MACD_Signal'].iloc[-1]
# Simple prediction based on technical indicators
trend = 1 if (rsi > 50 and macd > macd_signal) else -1
volatility = df['Volatility'].iloc[-1]
# Generate predictions
mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
# Create prediction dates based on timeframe
last_date = df.index[-1]
if timeframe == "1d":
pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
elif timeframe == "1h":
pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
else: # 15m
pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
# Create visualization
fig = make_subplots(rows=3, cols=1,
shared_xaxes=True,
vertical_spacing=0.05,
subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
# Add historical price
fig.add_trace(
go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
line=dict(color='blue')),
row=1, col=1
)
# Add prediction mean
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
line=dict(color='red')),
row=1, col=1
)
# Add confidence intervals
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
name='Upper Bound'),
row=1, col=1
)
fig.add_trace(
go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
name='Lower Bound'),
row=1, col=1
)
# Add technical indicators
fig.add_trace(
go.Scatter(x=df.index, y=df['RSI'], name='RSI',
line=dict(color='purple')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD'], name='MACD',
line=dict(color='orange')),
row=2, col=1
)
fig.add_trace(
go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
line=dict(color='green')),
row=2, col=1
)
# Add volume
fig.add_trace(
go.Bar(x=df.index, y=df['Volume'], name='Volume',
marker_color='gray'),
row=3, col=1
)
# Update layout with timeframe-specific settings
fig.update_layout(
title=f'{symbol} {timeframe} Analysis and Prediction',
xaxis_title='Date',
yaxis_title='Price',
height=1000,
showlegend=True
)
# Calculate trading signals
signals = calculate_trading_signals(df)
# Add prediction information to signals
signals.update({
"symbol": symbol,
"timeframe": timeframe,
"prediction": mean_pred.tolist(),
"confidence": std_pred.tolist(),
"dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
"strategy_used": strategy
})
return signals, fig
except Exception as e:
raise Exception(f"Prediction error: {str(e)}")
finally:
clear_gpu_memory()
def calculate_trading_signals(df: pd.DataFrame) -> Dict:
"""Calculate trading signals based on technical indicators"""
signals = {
"RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
"MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
"Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
"SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
}
# Calculate overall signal
buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
if buy_signals > sell_signals:
signals["Overall"] = "Buy"
elif sell_signals > buy_signals:
signals["Overall"] = "Sell"
else:
signals["Overall"] = "Hold"
return signals
def create_interface():
"""Create the Gradio interface with separate tabs for different timeframes"""
with gr.Blocks(title="Structured Product Analysis") as demo:
gr.Markdown("# Structured Product Analysis")
gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
# Add market status message
market_status = "Market is currently closed" if not is_market_open() else "Market is currently open"
next_trading_day = get_next_trading_day()
gr.Markdown(f"""
### Market Status: {market_status}
Next trading day: {next_trading_day.strftime('%Y-%m-%d')}
""")
with gr.Tabs() as tabs:
# Daily Analysis Tab
with gr.TabItem("Daily Analysis"):
with gr.Row():
with gr.Column():
daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
daily_prediction_days = gr.Slider(
minimum=1,
maximum=365,
value=30,
step=1,
label="Days to Predict"
)
daily_lookback_days = gr.Slider(
minimum=1,
maximum=3650,
value=365,
step=1,
label="Historical Lookback (Days)"
)
daily_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
daily_predict_btn = gr.Button("Analyze Stock")
with gr.Column():
daily_plot = gr.Plot(label="Analysis and Prediction")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
daily_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
daily_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
daily_sector_metrics = gr.JSON(label="Sector Metrics")
gr.Markdown("### Trading Signals")
daily_signals = gr.JSON(label="Trading Signals")
# Hourly Analysis Tab
with gr.TabItem("Hourly Analysis"):
with gr.Row():
with gr.Column():
hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
hourly_prediction_days = gr.Slider(
minimum=1,
maximum=7, # Limited to 7 days for hourly predictions
value=3,
step=1,
label="Days to Predict"
)
hourly_lookback_days = gr.Slider(
minimum=1,
maximum=30, # Limited to 30 days for hourly data
value=14,
step=1,
label="Historical Lookback (Days)"
)
hourly_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
hourly_predict_btn = gr.Button("Analyze Stock")
gr.Markdown("""
**Note for Hourly Analysis:**
- Maximum lookback period: 30 days (Yahoo Finance limit)
- Maximum prediction period: 7 days
- Data is only available during market hours
""")
with gr.Column():
hourly_plot = gr.Plot(label="Analysis and Prediction")
hourly_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
hourly_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
hourly_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
hourly_sector_metrics = gr.JSON(label="Sector Metrics")
# 15-Minute Analysis Tab
with gr.TabItem("15-Minute Analysis"):
with gr.Row():
with gr.Column():
min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
min15_prediction_days = gr.Slider(
minimum=1,
maximum=2, # Limited to 2 days for 15-minute predictions
value=1,
step=1,
label="Days to Predict"
)
min15_lookback_days = gr.Slider(
minimum=1,
maximum=5, # Yahoo Finance limit for 15-minute data
value=3,
step=1,
label="Historical Lookback (Days)"
)
min15_strategy = gr.Dropdown(
choices=["chronos", "technical"],
label="Prediction Strategy",
value="chronos"
)
min15_predict_btn = gr.Button("Analyze Stock")
gr.Markdown("""
**Note for 15-Minute Analysis:**
- Maximum lookback period: 5 days (Yahoo Finance limit)
- Maximum prediction period: 2 days
- Data is only available during market hours
- Requires at least 64 data points for Chronos predictions
""")
with gr.Column():
min15_plot = gr.Plot(label="Analysis and Prediction")
min15_signals = gr.JSON(label="Trading Signals")
with gr.Row():
with gr.Column():
gr.Markdown("### Structured Product Metrics")
min15_metrics = gr.JSON(label="Product Metrics")
gr.Markdown("### Risk Analysis")
min15_risk_metrics = gr.JSON(label="Risk Metrics")
gr.Markdown("### Sector Analysis")
min15_sector_metrics = gr.JSON(label="Sector Metrics")
def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
try:
signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
# Get historical data for additional metrics
df = get_historical_data(symbol, timeframe, lookback_days)
# Calculate structured product metrics
product_metrics = {
"Market_Cap": df['Market_Cap'].iloc[-1],
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Dividend_Yield": df['Dividend_Yield'].iloc[-1],
"Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
"Volume_Volatility": df['Volume_Volatility'].iloc[-1]
}
# Calculate risk metrics
risk_metrics = {
"Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
"Max_Drawdown": df['Max_Drawdown'].iloc[-1],
"Current_Drawdown": df['Drawdown'].iloc[-1],
"Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
"Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
}
# Calculate sector metrics
sector_metrics = {
"Sector": df['Sector'].iloc[-1],
"Industry": df['Industry'].iloc[-1],
"Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
"Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
}
return signals, fig, product_metrics, risk_metrics, sector_metrics
except Exception as e:
error_message = str(e)
if "Market is currently closed" in error_message:
error_message = f"{error_message}. Please try again during market hours or use daily timeframe."
elif "Insufficient data points" in error_message:
error_message = f"Not enough data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
elif "no price data found" in error_message:
error_message = f"No data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
raise gr.Error(error_message)
# Daily analysis button click
def daily_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
"""
Process daily timeframe stock analysis and generate predictions.
Args:
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
pd (int): Number of days to predict (1-365)
ld (int): Historical lookback period in days (1-3650)
st (str): Prediction strategy to use ("chronos" or "technical")
Returns:
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
- Trading signals dictionary
- Plotly figure with price and technical analysis
- Product metrics dictionary
- Risk metrics dictionary
- Sector metrics dictionary
Example:
>>> daily_analysis("AAPL", 30, 365, "chronos")
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
"""
return analyze_stock(s, "1d", pd, ld, st)
daily_predict_btn.click(
fn=daily_analysis,
inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
)
# Hourly analysis button click
def hourly_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
"""
Process hourly timeframe stock analysis and generate predictions.
Args:
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
pd (int): Number of days to predict (1-7)
ld (int): Historical lookback period in days (1-30)
st (str): Prediction strategy to use ("chronos" or "technical")
Returns:
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
- Trading signals dictionary
- Plotly figure with price and technical analysis
- Product metrics dictionary
- Risk metrics dictionary
- Sector metrics dictionary
Example:
>>> hourly_analysis("AAPL", 3, 14, "chronos")
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
"""
return analyze_stock(s, "1h", pd, ld, st)
hourly_predict_btn.click(
fn=hourly_analysis,
inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
)
# 15-minute analysis button click
def min15_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
"""
Process 15-minute timeframe stock analysis and generate predictions.
Args:
s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
pd (int): Number of days to predict (1-2)
ld (int): Historical lookback period in days (1-5)
st (str): Prediction strategy to use ("chronos" or "technical")
Returns:
Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
- Trading signals dictionary
- Plotly figure with price and technical analysis
- Product metrics dictionary
- Risk metrics dictionary
- Sector metrics dictionary
Example:
>>> min15_analysis("AAPL", 1, 3, "chronos")
({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
"""
return analyze_stock(s, "15m", pd, ld, st)
min15_predict_btn.click(
fn=min15_analysis,
inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(ssr_mode=False, mcp_server=True)