File size: 45,475 Bytes
f5e0821
 
 
 
 
 
877eedc
f5e0821
 
fe5cebb
 
 
 
877eedc
db1cbec
654a165
fd75294
 
f5e0821
fe5cebb
f5e0821
fe5cebb
 
f5e0821
fd75294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1cbec
 
 
 
 
 
a96f134
f5e0821
61754ec
f5e0821
db1cbec
 
 
248f443
db1cbec
 
8f98e80
61754ec
2384e68
61754ec
 
db1cbec
2384e68
db1cbec
2384e68
 
 
248f443
db1cbec
 
 
db47567
 
6b080c6
f5e0821
654a165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
f5e0821
 
 
 
 
 
fe5cebb
f5e0821
 
fe5cebb
f5e0821
 
654a165
 
 
 
 
bd7c6bf
f5e0821
 
 
 
 
 
 
bd7c6bf
 
 
 
 
 
f5e0821
 
fe5cebb
f5e0821
fd75294
f5e0821
fd75294
 
 
 
 
f5e0821
bd7c6bf
 
 
165a173
 
 
 
 
 
 
fd75294
 
1c92324
 
 
 
fd75294
1c92324
 
165a173
 
 
 
1c92324
 
 
165a173
 
 
 
1702ce4
bd7c6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee45d4
 
 
 
fe5cebb
 
 
 
 
 
cee45d4
bd7c6bf
1702ce4
 
bd7c6bf
1702ce4
bd7c6bf
1702ce4
 
cee45d4
 
f5e0821
165a173
1c92324
cee45d4
 
 
 
fd75294
cee45d4
fd75294
 
 
 
 
cee45d4
 
1c92324
f5e0821
bd7c6bf
 
 
165a173
 
 
fe5cebb
f5e0821
 
 
 
fe5cebb
 
165a173
248f443
fe5cebb
 
 
 
 
 
 
 
165a173
248f443
fe5cebb
 
 
 
 
 
 
 
165a173
248f443
fe5cebb
 
 
 
 
 
762264d
8828171
f5e0821
61754ec
f5e0821
 
 
09db56d
f5e0821
fe5cebb
f5e0821
 
8828171
f5e0821
 
 
fe5cebb
f5e0821
fe5cebb
db1cbec
 
2665f90
 
bd7c6bf
61754ec
 
2665f90
 
 
 
 
bd7c6bf
61754ec
db1cbec
cd87fec
6616ba7
8f98e80
 
cf7c042
6616ba7
cf7c042
 
6616ba7
cf7c042
09db56d
 
61754ec
09db56d
61754ec
09db56d
61754ec
09db56d
61754ec
 
 
bd7c6bf
 
db1cbec
f2f7fa2
579637f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94ef5d
 
 
 
 
579637f
 
 
 
b94ef5d
 
 
 
efd66db
b94ef5d
 
 
efd66db
b94ef5d
 
 
efd66db
b94ef5d
 
 
 
0025d7f
0bddd1c
0025d7f
0bddd1c
0025d7f
 
 
b94ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579637f
b94ef5d
 
 
 
 
 
 
 
 
 
027a49e
b94ef5d
 
 
 
248f443
b94ef5d
 
 
 
da0507e
b94ef5d
 
 
f2f7fa2
b94ef5d
 
 
f2f7fa2
b94ef5d
 
 
 
 
 
 
 
 
 
 
 
 
 
579637f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db1cbec
 
579637f
 
 
 
db1cbec
 
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
fe5cebb
09db56d
 
 
 
 
 
f5e0821
 
fe5cebb
 
 
 
f5e0821
fe5cebb
f5e0821
fe5cebb
f5e0821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe5cebb
f5e0821
fe5cebb
 
 
 
 
 
 
 
 
 
 
f5e0821
 
 
 
fe5cebb
 
 
 
 
 
 
09db56d
f5e0821
09db56d
f5e0821
 
fe5cebb
f5e0821
 
 
fe5cebb
 
 
8828171
 
f5e0821
09db56d
f5e0821
 
09db56d
db1cbec
8828171
 
 
f5e0821
 
 
db1cbec
 
f5e0821
fe5cebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e0821
09db56d
1702ce4
 
 
f5e0821
654a165
 
 
 
 
 
 
 
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654a165
09db56d
 
 
 
 
 
 
 
654a165
 
 
f5e0821
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6655309
 
 
 
 
 
09db56d
 
 
 
1702ce4
09db56d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6655309
09db56d
 
 
 
 
 
 
 
 
 
6655309
 
 
 
 
 
 
09db56d
 
 
 
1702ce4
09db56d
 
 
 
 
 
 
 
 
 
1702ce4
 
6655309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654a165
 
 
6655309
 
 
 
1702ce4
09db56d
eb30d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db56d
eb30d21
09db56d
 
 
 
 
eb30d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db56d
eb30d21
09db56d
 
 
 
 
eb30d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09db56d
eb30d21
09db56d
 
f5e0821
 
 
 
 
 
762264d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
import gradio as gr
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import yfinance as yf
import torch
from chronos import ChronosPipeline
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
from typing import Dict, List, Tuple, Optional
import json
import spaces
import gc
import pytz
import time
import random

# Initialize global variables
pipeline = None
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit_transform([[-1, 1]])

def retry_yfinance_request(func, max_retries=3, initial_delay=1):
    """
    Retry mechanism for yfinance requests with exponential backoff.
    
    Args:
        func: Function to retry
        max_retries: Maximum number of retry attempts
        initial_delay: Initial delay in seconds before first retry
    
    Returns:
        Result of the function call if successful
    """
    for attempt in range(max_retries):
        try:
            return func()
        except Exception as e:
            if "401" in str(e) and attempt < max_retries - 1:
                # Calculate delay with exponential backoff and jitter
                delay = initial_delay * (2 ** attempt) + random.uniform(0, 1)
                time.sleep(delay)
                continue
            raise e

def clear_gpu_memory():
    """Clear GPU memory cache"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        gc.collect()

@spaces.GPU()
def load_pipeline():
    """Load the Chronos model without GPU configuration"""
    global pipeline
    try:
        if pipeline is None:
            clear_gpu_memory()
            print("Loading Chronos model...")
            pipeline = ChronosPipeline.from_pretrained(
                "amazon/chronos-t5-large",
                device_map="cuda",  # Force CUDA device mapping
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                trust_remote_code=True,
                use_safetensors=True
            )
            # Set model to evaluation mode
            pipeline.model = pipeline.model.eval()
            # Disable gradient computation
            for param in pipeline.model.parameters():
                param.requires_grad = False
            print("Chronos model loaded successfully")
        return pipeline
    except Exception as e:
        print(f"Error loading pipeline: {str(e)}")
        print(f"Error type: {type(e)}")
        print(f"Error details: {str(e)}")
        raise RuntimeError(f"Failed to load model: {str(e)}")

def is_market_open() -> bool:
    """Check if the market is currently open"""
    now = datetime.now()
    # Check if it's a weekday (0 = Monday, 6 = Sunday)
    if now.weekday() >= 5:  # Saturday or Sunday
        return False
    
    # Check if it's during market hours (9:30 AM - 4:00 PM ET)
    et_time = now.astimezone(pytz.timezone('US/Eastern'))
    market_open = et_time.replace(hour=9, minute=30, second=0, microsecond=0)
    market_close = et_time.replace(hour=16, minute=0, second=0, microsecond=0)
    
    return market_open <= et_time <= market_close

def get_next_trading_day() -> datetime:
    """Get the next trading day"""
    now = datetime.now()
    next_day = now + timedelta(days=1)
    
    # Skip weekends
    while next_day.weekday() >= 5:  # Saturday or Sunday
        next_day += timedelta(days=1)
    
    return next_day

def get_historical_data(symbol: str, timeframe: str = "1d", lookback_days: int = 365) -> pd.DataFrame:
    """
    Fetch historical data using yfinance.
    
    Args:
        symbol (str): The stock symbol (e.g., 'AAPL')
        timeframe (str): The timeframe for data ('1d', '1h', '15m')
        lookback_days (int): Number of days to look back
    
    Returns:
        pd.DataFrame: Historical data with OHLCV and technical indicators
    """
    try:
        # Check if market is open for intraday data
        if timeframe in ["1h", "15m"] and not is_market_open():
            next_trading_day = get_next_trading_day()
            raise Exception(f"Market is currently closed. Next trading day is {next_trading_day.strftime('%Y-%m-%d')}")
        
        # Map timeframe to yfinance interval and adjust lookback period
        tf_map = {
            "1d": "1d",
            "1h": "1h",
            "15m": "15m"
        }
        interval = tf_map.get(timeframe, "1d")
        
        # Adjust lookback period based on timeframe
        if timeframe == "1h":
            lookback_days = min(lookback_days, 30)  # Yahoo limits hourly data to 30 days
        elif timeframe == "15m":
            lookback_days = min(lookback_days, 5)   # Yahoo limits 15m data to 5 days
        
        # Calculate date range
        end_date = datetime.now()
        start_date = end_date - timedelta(days=lookback_days)
        
        # Fetch data using yfinance with retry mechanism
        ticker = yf.Ticker(symbol)
        
        def fetch_history():
            return ticker.history(start=start_date, end=end_date, interval=interval)
        
        df = retry_yfinance_request(fetch_history)
        
        if df.empty:
            raise Exception(f"No data available for {symbol} in {timeframe} timeframe")
        
        # Ensure all required columns are present and numeric
        required_columns = ['Open', 'High', 'Low', 'Close', 'Volume']
        for col in required_columns:
            if col not in df.columns:
                raise Exception(f"Missing required column: {col}")
            df[col] = pd.to_numeric(df[col], errors='coerce')
        
        # Get additional info for structured products with retry mechanism
        def fetch_info():
            info = ticker.info
            if info is None:
                raise Exception(f"Could not fetch company info for {symbol}")
            return info
        
        try:
            info = retry_yfinance_request(fetch_info)
            df['Market_Cap'] = float(info.get('marketCap', 0))
            df['Sector'] = info.get('sector', 'Unknown')
            df['Industry'] = info.get('industry', 'Unknown')
            df['Dividend_Yield'] = float(info.get('dividendYield', 0))
        except Exception as e:
            print(f"Warning: Could not fetch company info for {symbol}: {str(e)}")
            # Set default values for missing info
            df['Market_Cap'] = 0.0
            df['Sector'] = 'Unknown'
            df['Industry'] = 'Unknown'
            df['Dividend_Yield'] = 0.0
        
        # Calculate technical indicators with adjusted windows based on timeframe
        if timeframe == "1d":
            sma_window_20 = 20
            sma_window_50 = 50
            sma_window_200 = 200
            vol_window = 20
        elif timeframe == "1h":
            sma_window_20 = 20 * 6  # 5 trading days
            sma_window_50 = 50 * 6  # ~10 trading days
            sma_window_200 = 200 * 6  # ~40 trading days
            vol_window = 20 * 6
        else:  # 15m
            sma_window_20 = 20 * 24  # 5 trading days
            sma_window_50 = 50 * 24  # ~10 trading days
            sma_window_200 = 200 * 24  # ~40 trading days
            vol_window = 20 * 24
        
        # Calculate technical indicators
        df['SMA_20'] = df['Close'].rolling(window=sma_window_20, min_periods=1).mean()
        df['SMA_50'] = df['Close'].rolling(window=sma_window_50, min_periods=1).mean()
        df['SMA_200'] = df['Close'].rolling(window=sma_window_200, min_periods=1).mean()
        df['RSI'] = calculate_rsi(df['Close'])
        df['MACD'], df['MACD_Signal'] = calculate_macd(df['Close'])
        df['BB_Upper'], df['BB_Middle'], df['BB_Lower'] = calculate_bollinger_bands(df['Close'])
        
        # Calculate returns and volatility
        df['Returns'] = df['Close'].pct_change()
        df['Volatility'] = df['Returns'].rolling(window=vol_window, min_periods=1).std()
        df['Annualized_Vol'] = df['Volatility'] * np.sqrt(252)
        
        # Calculate drawdown metrics
        df['Rolling_Max'] = df['Close'].rolling(window=len(df), min_periods=1).max()
        df['Drawdown'] = (df['Close'] - df['Rolling_Max']) / df['Rolling_Max']
        df['Max_Drawdown'] = df['Drawdown'].rolling(window=len(df), min_periods=1).min()
        
        # Calculate liquidity metrics
        df['Avg_Daily_Volume'] = df['Volume'].rolling(window=vol_window, min_periods=1).mean()
        df['Volume_Volatility'] = df['Volume'].rolling(window=vol_window, min_periods=1).std()
        
        # Fill NaN values using forward fill then backward fill
        df = df.ffill().bfill()
        
        # Ensure we have enough data points
        min_required_points = 64  # Minimum required for Chronos
        if len(df) < min_required_points:
            # Try to fetch more historical data with retry mechanism
            extended_start_date = start_date - timedelta(days=min_required_points - len(df))
            
            def fetch_extended_history():
                return ticker.history(start=extended_start_date, end=start_date, interval=interval)
            
            extended_df = retry_yfinance_request(fetch_extended_history)
            if not extended_df.empty:
                df = pd.concat([extended_df, df])
                df = df.ffill().bfill()
        
        if len(df) < 2:
            raise Exception(f"Insufficient data points for {symbol} in {timeframe} timeframe")
        
        # Final check for any remaining None values
        df = df.fillna(0)
        
        return df
        
    except Exception as e:
        raise Exception(f"Error fetching historical data for {symbol}: {str(e)}")

def calculate_rsi(prices: pd.Series, period: int = 14) -> pd.Series:
    """Calculate Relative Strength Index"""
    # Handle None values by forward filling
    prices = prices.ffill().bfill()
    delta = prices.diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
    rs = gain / loss
    return 100 - (100 / (1 + rs))

def calculate_macd(prices: pd.Series, fast: int = 12, slow: int = 26, signal: int = 9) -> Tuple[pd.Series, pd.Series]:
    """Calculate MACD and Signal line"""
    # Handle None values by forward filling
    prices = prices.ffill().bfill()
    exp1 = prices.ewm(span=fast, adjust=False).mean()
    exp2 = prices.ewm(span=slow, adjust=False).mean()
    macd = exp1 - exp2
    signal_line = macd.ewm(span=signal, adjust=False).mean()
    return macd, signal_line

def calculate_bollinger_bands(prices: pd.Series, period: int = 20, std_dev: int = 2) -> Tuple[pd.Series, pd.Series, pd.Series]:
    """Calculate Bollinger Bands"""
    # Handle None values by forward filling
    prices = prices.ffill().bfill()
    middle_band = prices.rolling(window=period).mean()
    std = prices.rolling(window=period).std()
    upper_band = middle_band + (std * std_dev)
    lower_band = middle_band - (std * std_dev)
    return upper_band, middle_band, lower_band

@spaces.GPU(duration=180)
def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5, strategy: str = "chronos") -> Tuple[Dict, go.Figure]:
    """
    Make prediction using selected strategy with ZeroGPU.
    
    Args:
        symbol (str): Stock symbol
        timeframe (str): Data timeframe ('1d', '1h', '15m')
        prediction_days (int): Number of days to predict
        strategy (str): Prediction strategy to use
    
    Returns:
        Tuple[Dict, go.Figure]: Trading signals and visualization plot
    """
    try:
        # Get historical data
        df = get_historical_data(symbol, timeframe)
        
        if strategy == "chronos":
            try:
                # Prepare data for Chronos
                prices = df['Close'].values
                normalized_prices = scaler.fit_transform(prices.reshape(-1, 1)).flatten()
                
                # Ensure we have enough data points
                min_data_points = 64
                if len(normalized_prices) < min_data_points:
                    padding = np.full(min_data_points - len(normalized_prices), normalized_prices[-1])
                    normalized_prices = np.concatenate([padding, normalized_prices])
                elif len(normalized_prices) > min_data_points:
                    normalized_prices = normalized_prices[-min_data_points:]
                
                # Load pipeline and move to GPU
                pipe = load_pipeline()
                
                # Get the model's device and dtype
                device = torch.device("cuda:0")  # Force CUDA device
                dtype = torch.float16  # Force float16
                print(f"Model device: {device}")
                print(f"Model dtype: {dtype}")
                
                # Convert to tensor and ensure proper shape and device
                context = torch.tensor(normalized_prices, dtype=dtype, device=device)
                
                # Adjust prediction length based on timeframe
                if timeframe == "1d":
                    max_prediction_length = 64
                elif timeframe == "1h":
                    max_prediction_length = 168
                else:  # 15m
                    max_prediction_length = 192
                
                actual_prediction_length = min(prediction_days, max_prediction_length) if timeframe == "1d" else \
                    min(prediction_days * 24, max_prediction_length) if timeframe == "1h" else \
                    min(prediction_days * 96, max_prediction_length)
                
                actual_prediction_length = max(1, actual_prediction_length)
                
                # Use predict_quantiles with proper formatting
                with torch.amp.autocast('cuda'):
                    # Ensure all inputs are on GPU
                    context = context.to(device)
                    
                    # Move quantile levels to GPU
                    quantile_levels = torch.tensor([0.1, 0.5, 0.9], device=device, dtype=dtype)
                    
                    # Ensure prediction length is on GPU
                    prediction_length = torch.tensor(actual_prediction_length, device=device, dtype=torch.long)
                    
                    # Force all model components to GPU
                    pipe.model = pipe.model.to(device)
                    
                    # Move model to evaluation mode
                    pipe.model.eval()
                    
                    # Ensure context is properly shaped and on GPU
                    if len(context.shape) == 1:
                        context = context.unsqueeze(0)
                    context = context.to(device)
                    
                    # Move all model parameters and buffers to GPU
                    for param in pipe.model.parameters():
                        param.data = param.data.to(device)
                    for buffer in pipe.model.buffers():
                        buffer.data = buffer.data.to(device)
                    
                    # Move all model submodules to GPU
                    for module in pipe.model.modules():
                        if hasattr(module, 'to'):
                            module.to(device)
                    
                    # Move all model attributes to GPU
                    for name, value in pipe.model.__dict__.items():
                        if isinstance(value, torch.Tensor):
                            pipe.model.__dict__[name] = value.to(device)
                    
                    # Move all model config tensors to GPU
                    if hasattr(pipe.model, 'config'):
                        for key, value in pipe.model.config.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.model.config, key, value.to(device))
                    
                    # Move all pipeline tensors to GPU
                    for name, value in pipe.__dict__.items():
                        if isinstance(value, torch.Tensor):
                            setattr(pipe, name, value.to(device))
                    
                    # Ensure all model states are on GPU
                    if hasattr(pipe.model, 'state_dict'):
                        state_dict = pipe.model.state_dict()
                        for key in state_dict:
                            if isinstance(state_dict[key], torch.Tensor):
                                state_dict[key] = state_dict[key].to(device)
                        pipe.model.load_state_dict(state_dict)
                    
                    # Move any additional components to GPU
                    if hasattr(pipe, 'tokenizer'):
                        # Move tokenizer to GPU if it supports it
                        if hasattr(pipe.tokenizer, 'to'):
                            pipe.tokenizer = pipe.tokenizer.to(device)
                        
                        # Move all tokenizer tensors to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.tokenizer, name, value.to(device))
                        
                        # Handle MeanScaleUniformBins specific attributes
                        if hasattr(pipe.tokenizer, 'bins'):
                            if isinstance(pipe.tokenizer.bins, torch.Tensor):
                                pipe.tokenizer.bins = pipe.tokenizer.bins.to(device)
                        
                        if hasattr(pipe.tokenizer, 'scale'):
                            if isinstance(pipe.tokenizer.scale, torch.Tensor):
                                pipe.tokenizer.scale = pipe.tokenizer.scale.to(device)
                        
                        if hasattr(pipe.tokenizer, 'mean'):
                            if isinstance(pipe.tokenizer.mean, torch.Tensor):
                                pipe.tokenizer.mean = pipe.tokenizer.mean.to(device)
                        
                        # Move any additional tensors in the tokenizer's attributes to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                pipe.tokenizer.__dict__[name] = value.to(device)
                        
                        # Remove the EOS token handling since MeanScaleUniformBins doesn't use it
                        if hasattr(pipe.tokenizer, '_append_eos_token'):
                            # Create a wrapper that just returns the input tensors
                            def wrapped_append_eos(token_ids, attention_mask):
                                return token_ids, attention_mask
                            pipe.tokenizer._append_eos_token = wrapped_append_eos
                    
                    # Force synchronization again to ensure all tensors are on GPU
                    torch.cuda.synchronize()
                    
                    # Ensure all model components are in eval mode
                    pipe.model.eval()
                    
                    # Move any additional tensors in the model's config to GPU
                    if hasattr(pipe.model, 'config'):
                        for key, value in pipe.model.config.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.model.config, key, value.to(device))
                    
                    # Move any additional tensors in the model's state dict to GPU
                    if hasattr(pipe.model, 'state_dict'):
                        state_dict = pipe.model.state_dict()
                        for key in state_dict:
                            if isinstance(state_dict[key], torch.Tensor):
                                state_dict[key] = state_dict[key].to(device)
                        pipe.model.load_state_dict(state_dict)
                    
                    # Move any additional tensors in the model's buffers to GPU
                    for name, buffer in pipe.model.named_buffers():
                        if buffer is not None:
                            pipe.model.register_buffer(name, buffer.to(device))
                    
                    # Move any additional tensors in the model's parameters to GPU
                    for name, param in pipe.model.named_parameters():
                        if param is not None:
                            param.data = param.data.to(device)
                    
                    # Move any additional tensors in the model's attributes to GPU
                    for name, value in pipe.model.__dict__.items():
                        if isinstance(value, torch.Tensor):
                            pipe.model.__dict__[name] = value.to(device)
                    
                    # Move any additional tensors in the model's modules to GPU
                    for name, module in pipe.model.named_modules():
                        if hasattr(module, 'to'):
                            module.to(device)
                        # Move any tensors in the module's __dict__
                        for key, value in module.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(module, key, value.to(device))
                    
                    # Force synchronization again to ensure all tensors are on GPU
                    torch.cuda.synchronize()
                    
                    # Ensure tokenizer is on GPU and all its tensors are on GPU
                    if hasattr(pipe, 'tokenizer'):
                        # Move tokenizer to GPU if it supports it
                        if hasattr(pipe.tokenizer, 'to'):
                            pipe.tokenizer = pipe.tokenizer.to(device)
                        
                        # Move all tokenizer tensors to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                setattr(pipe.tokenizer, name, value.to(device))
                        
                        # Handle MeanScaleUniformBins specific attributes
                        if hasattr(pipe.tokenizer, 'bins'):
                            if isinstance(pipe.tokenizer.bins, torch.Tensor):
                                pipe.tokenizer.bins = pipe.tokenizer.bins.to(device)
                        
                        if hasattr(pipe.tokenizer, 'scale'):
                            if isinstance(pipe.tokenizer.scale, torch.Tensor):
                                pipe.tokenizer.scale = pipe.tokenizer.scale.to(device)
                        
                        if hasattr(pipe.tokenizer, 'mean'):
                            if isinstance(pipe.tokenizer.mean, torch.Tensor):
                                pipe.tokenizer.mean = pipe.tokenizer.mean.to(device)
                        
                        # Move any additional tensors in the tokenizer's attributes to GPU
                        for name, value in pipe.tokenizer.__dict__.items():
                            if isinstance(value, torch.Tensor):
                                pipe.tokenizer.__dict__[name] = value.to(device)
                    
                    # Force synchronization again to ensure all tensors are on GPU
                    torch.cuda.synchronize()
                    
                    # Make prediction
                    quantiles, mean = pipe.predict_quantiles(
                        context=context,
                        prediction_length=actual_prediction_length,
                        quantile_levels=[0.1, 0.5, 0.9]
                    )
                
                if quantiles is None or mean is None:
                    raise ValueError("Chronos returned empty prediction")
                
                print(f"Quantiles shape: {quantiles.shape}, Mean shape: {mean.shape}")
                
                # Convert to numpy arrays
                quantiles = quantiles.detach().cpu().numpy()
                mean = mean.detach().cpu().numpy()
                
                # Denormalize predictions
                mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
                lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
                upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
                
                # Calculate standard deviation from quantiles
                std_pred = (upper_bound - lower_bound) / (2 * 1.645)
                
                # If we had to limit the prediction length, extend the prediction
                if actual_prediction_length < prediction_days:
                    last_pred = mean_pred[-1]
                    last_std = std_pred[-1]
                    extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
                    mean_pred = np.concatenate([mean_pred, extension])
                    std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
                
            except Exception as e:
                print(f"Chronos prediction error: {str(e)}")
                print(f"Error type: {type(e)}")
                print(f"Error details: {str(e)}")
                raise
        
        if strategy == "technical":
            # Technical analysis based prediction
            last_price = df['Close'].iloc[-1]
            rsi = df['RSI'].iloc[-1]
            macd = df['MACD'].iloc[-1]
            macd_signal = df['MACD_Signal'].iloc[-1]
            
            # Simple prediction based on technical indicators
            trend = 1 if (rsi > 50 and macd > macd_signal) else -1
            volatility = df['Volatility'].iloc[-1]
            
            # Generate predictions
            mean_pred = np.array([last_price * (1 + trend * volatility * i) for i in range(1, prediction_days + 1)])
            std_pred = np.array([volatility * last_price * i for i in range(1, prediction_days + 1)])
        
        # Create prediction dates based on timeframe
        last_date = df.index[-1]
        if timeframe == "1d":
            pred_dates = pd.date_range(start=last_date + timedelta(days=1), periods=prediction_days)
        elif timeframe == "1h":
            pred_dates = pd.date_range(start=last_date + timedelta(hours=1), periods=prediction_days * 24)
        else:  # 15m
            pred_dates = pd.date_range(start=last_date + timedelta(minutes=15), periods=prediction_days * 96)
        
        # Create visualization
        fig = make_subplots(rows=3, cols=1, 
                           shared_xaxes=True,
                           vertical_spacing=0.05,
                           subplot_titles=('Price Prediction', 'Technical Indicators', 'Volume'))
        
        # Add historical price
        fig.add_trace(
            go.Scatter(x=df.index, y=df['Close'], name='Historical Price',
                      line=dict(color='blue')),
            row=1, col=1
        )
        
        # Add prediction mean
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred, name='Predicted Price',
                      line=dict(color='red')),
            row=1, col=1
        )
        
        # Add confidence intervals
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred + 1.96 * std_pred,
                      fill=None, mode='lines', line_color='rgba(255,0,0,0.2)',
                      name='Upper Bound'),
            row=1, col=1
        )
        fig.add_trace(
            go.Scatter(x=pred_dates, y=mean_pred - 1.96 * std_pred,
                      fill='tonexty', mode='lines', line_color='rgba(255,0,0,0.2)',
                      name='Lower Bound'),
            row=1, col=1
        )
        
        # Add technical indicators
        fig.add_trace(
            go.Scatter(x=df.index, y=df['RSI'], name='RSI',
                      line=dict(color='purple')),
            row=2, col=1
        )
        fig.add_trace(
            go.Scatter(x=df.index, y=df['MACD'], name='MACD',
                      line=dict(color='orange')),
            row=2, col=1
        )
        fig.add_trace(
            go.Scatter(x=df.index, y=df['MACD_Signal'], name='MACD Signal',
                      line=dict(color='green')),
            row=2, col=1
        )
        
        # Add volume
        fig.add_trace(
            go.Bar(x=df.index, y=df['Volume'], name='Volume',
                  marker_color='gray'),
            row=3, col=1
        )
        
        # Update layout with timeframe-specific settings
        fig.update_layout(
            title=f'{symbol} {timeframe} Analysis and Prediction',
            xaxis_title='Date',
            yaxis_title='Price',
            height=1000,
            showlegend=True
        )
        
        # Calculate trading signals
        signals = calculate_trading_signals(df)
        
        # Add prediction information to signals
        signals.update({
            "symbol": symbol,
            "timeframe": timeframe,
            "prediction": mean_pred.tolist(),
            "confidence": std_pred.tolist(),
            "dates": pred_dates.strftime('%Y-%m-%d %H:%M:%S').tolist(),
            "strategy_used": strategy
        })
        
        return signals, fig
        
    except Exception as e:
        raise Exception(f"Prediction error: {str(e)}")
    finally:
        clear_gpu_memory()

def calculate_trading_signals(df: pd.DataFrame) -> Dict:
    """Calculate trading signals based on technical indicators"""
    signals = {
        "RSI": "Oversold" if df['RSI'].iloc[-1] < 30 else "Overbought" if df['RSI'].iloc[-1] > 70 else "Neutral",
        "MACD": "Buy" if df['MACD'].iloc[-1] > df['MACD_Signal'].iloc[-1] else "Sell",
        "Bollinger": "Buy" if df['Close'].iloc[-1] < df['BB_Lower'].iloc[-1] else "Sell" if df['Close'].iloc[-1] > df['BB_Upper'].iloc[-1] else "Hold",
        "SMA": "Buy" if df['SMA_20'].iloc[-1] > df['SMA_50'].iloc[-1] else "Sell"
    }
    
    # Calculate overall signal
    buy_signals = sum(1 for signal in signals.values() if signal == "Buy")
    sell_signals = sum(1 for signal in signals.values() if signal == "Sell")
    
    if buy_signals > sell_signals:
        signals["Overall"] = "Buy"
    elif sell_signals > buy_signals:
        signals["Overall"] = "Sell"
    else:
        signals["Overall"] = "Hold"
    
    return signals

def create_interface():
    """Create the Gradio interface with separate tabs for different timeframes"""
    with gr.Blocks(title="Structured Product Analysis") as demo:
        gr.Markdown("# Structured Product Analysis")
        gr.Markdown("Analyze stocks for inclusion in structured financial products with extended time horizons.")
        
        # Add market status message
        market_status = "Market is currently closed" if not is_market_open() else "Market is currently open"
        next_trading_day = get_next_trading_day()
        gr.Markdown(f"""
        ### Market Status: {market_status}
        Next trading day: {next_trading_day.strftime('%Y-%m-%d')}
        """)
        
        with gr.Tabs() as tabs:
            # Daily Analysis Tab
            with gr.TabItem("Daily Analysis"):
                with gr.Row():
                    with gr.Column():
                        daily_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        daily_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=365,
                            value=30,
                            step=1,
                            label="Days to Predict"
                        )
                        daily_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=3650,
                            value=365,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        daily_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        daily_predict_btn = gr.Button("Analyze Stock")
                    
                    with gr.Column():
                        daily_plot = gr.Plot(label="Analysis and Prediction")
                
                with gr.Row():
                    with gr.Column():

                        gr.Markdown("### Structured Product Metrics")
                        daily_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Risk Analysis")
                        daily_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Sector Analysis")
                        daily_sector_metrics = gr.JSON(label="Sector Metrics")

                        gr.Markdown("### Trading Signals")
                        daily_signals = gr.JSON(label="Trading Signals")
            
            # Hourly Analysis Tab
            with gr.TabItem("Hourly Analysis"):
                with gr.Row():
                    with gr.Column():
                        hourly_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        hourly_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=7,  # Limited to 7 days for hourly predictions
                            value=3,
                            step=1,
                            label="Days to Predict"
                        )
                        hourly_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=30,  # Limited to 30 days for hourly data
                            value=14,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        hourly_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        hourly_predict_btn = gr.Button("Analyze Stock")
                        gr.Markdown("""
                        **Note for Hourly Analysis:**
                        - Maximum lookback period: 30 days (Yahoo Finance limit)
                        - Maximum prediction period: 7 days
                        - Data is only available during market hours
                        """)
                    
                    with gr.Column():
                        hourly_plot = gr.Plot(label="Analysis and Prediction")
                        hourly_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        hourly_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Risk Analysis")
                        hourly_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Sector Analysis")
                        hourly_sector_metrics = gr.JSON(label="Sector Metrics")
            
            # 15-Minute Analysis Tab
            with gr.TabItem("15-Minute Analysis"):
                with gr.Row():
                    with gr.Column():
                        min15_symbol = gr.Textbox(label="Stock Symbol (e.g., AAPL)", value="AAPL")
                        min15_prediction_days = gr.Slider(
                            minimum=1,
                            maximum=2,  # Limited to 2 days for 15-minute predictions
                            value=1,
                            step=1,
                            label="Days to Predict"
                        )
                        min15_lookback_days = gr.Slider(
                            minimum=1,
                            maximum=5,  # Yahoo Finance limit for 15-minute data
                            value=3,
                            step=1,
                            label="Historical Lookback (Days)"
                        )
                        min15_strategy = gr.Dropdown(
                            choices=["chronos", "technical"],
                            label="Prediction Strategy",
                            value="chronos"
                        )
                        min15_predict_btn = gr.Button("Analyze Stock")
                        gr.Markdown("""
                        **Note for 15-Minute Analysis:**
                        - Maximum lookback period: 5 days (Yahoo Finance limit)
                        - Maximum prediction period: 2 days
                        - Data is only available during market hours
                        - Requires at least 64 data points for Chronos predictions
                        """)
                    
                    with gr.Column():
                        min15_plot = gr.Plot(label="Analysis and Prediction")
                        min15_signals = gr.JSON(label="Trading Signals")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Structured Product Metrics")
                        min15_metrics = gr.JSON(label="Product Metrics")
                        
                        gr.Markdown("### Risk Analysis")
                        min15_risk_metrics = gr.JSON(label="Risk Metrics")
                        
                        gr.Markdown("### Sector Analysis")
                        min15_sector_metrics = gr.JSON(label="Sector Metrics")
        
        def analyze_stock(symbol, timeframe, prediction_days, lookback_days, strategy):
            try:
                signals, fig = make_prediction(symbol, timeframe, prediction_days, strategy)
                
                # Get historical data for additional metrics
                df = get_historical_data(symbol, timeframe, lookback_days)
                
                # Calculate structured product metrics
                product_metrics = {
                    "Market_Cap": df['Market_Cap'].iloc[-1],
                    "Sector": df['Sector'].iloc[-1],
                    "Industry": df['Industry'].iloc[-1],
                    "Dividend_Yield": df['Dividend_Yield'].iloc[-1],
                    "Avg_Daily_Volume": df['Avg_Daily_Volume'].iloc[-1],
                    "Volume_Volatility": df['Volume_Volatility'].iloc[-1]
                }
                
                # Calculate risk metrics
                risk_metrics = {
                    "Annualized_Volatility": df['Annualized_Vol'].iloc[-1],
                    "Max_Drawdown": df['Max_Drawdown'].iloc[-1],
                    "Current_Drawdown": df['Drawdown'].iloc[-1],
                    "Sharpe_Ratio": (df['Returns'].mean() * 252) / (df['Returns'].std() * np.sqrt(252)),
                    "Sortino_Ratio": (df['Returns'].mean() * 252) / (df['Returns'][df['Returns'] < 0].std() * np.sqrt(252))
                }
                
                # Calculate sector metrics
                sector_metrics = {
                    "Sector": df['Sector'].iloc[-1],
                    "Industry": df['Industry'].iloc[-1],
                    "Market_Cap_Rank": "Large" if df['Market_Cap'].iloc[-1] > 1e10 else "Mid" if df['Market_Cap'].iloc[-1] > 1e9 else "Small",
                    "Liquidity_Score": "High" if df['Avg_Daily_Volume'].iloc[-1] > 1e6 else "Medium" if df['Avg_Daily_Volume'].iloc[-1] > 1e5 else "Low"
                }
                
                return signals, fig, product_metrics, risk_metrics, sector_metrics
            except Exception as e:
                error_message = str(e)
                if "Market is currently closed" in error_message:
                    error_message = f"{error_message}. Please try again during market hours or use daily timeframe."
                elif "Insufficient data points" in error_message:
                    error_message = f"Not enough data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
                elif "no price data found" in error_message:
                    error_message = f"No data available for {symbol} in {timeframe} timeframe. Please try a different timeframe or symbol."
                raise gr.Error(error_message)
        
        # Daily analysis button click
        def daily_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
            """
            Process daily timeframe stock analysis and generate predictions.

            Args:
                s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
                pd (int): Number of days to predict (1-365)
                ld (int): Historical lookback period in days (1-3650)
                st (str): Prediction strategy to use ("chronos" or "technical")

            Returns:
                Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
                    - Trading signals dictionary
                    - Plotly figure with price and technical analysis
                    - Product metrics dictionary
                    - Risk metrics dictionary
                    - Sector metrics dictionary

            Example:
                >>> daily_analysis("AAPL", 30, 365, "chronos")
                ({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
            """
            return analyze_stock(s, "1d", pd, ld, st)

        daily_predict_btn.click(
            fn=daily_analysis,
            inputs=[daily_symbol, daily_prediction_days, daily_lookback_days, daily_strategy],
            outputs=[daily_signals, daily_plot, daily_metrics, daily_risk_metrics, daily_sector_metrics]
        )
        
        # Hourly analysis button click
        def hourly_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
            """
            Process hourly timeframe stock analysis and generate predictions.

            Args:
                s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
                pd (int): Number of days to predict (1-7)
                ld (int): Historical lookback period in days (1-30)
                st (str): Prediction strategy to use ("chronos" or "technical")

            Returns:
                Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
                    - Trading signals dictionary
                    - Plotly figure with price and technical analysis
                    - Product metrics dictionary
                    - Risk metrics dictionary
                    - Sector metrics dictionary

            Example:
                >>> hourly_analysis("AAPL", 3, 14, "chronos")
                ({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
            """
            return analyze_stock(s, "1h", pd, ld, st)

        hourly_predict_btn.click(
            fn=hourly_analysis,
            inputs=[hourly_symbol, hourly_prediction_days, hourly_lookback_days, hourly_strategy],
            outputs=[hourly_signals, hourly_plot, hourly_metrics, hourly_risk_metrics, hourly_sector_metrics]
        )
        
        # 15-minute analysis button click
        def min15_analysis(s: str, pd: int, ld: int, st: str) -> Tuple[Dict, go.Figure, Dict, Dict, Dict]:
            """
            Process 15-minute timeframe stock analysis and generate predictions.

            Args:
                s (str): Stock symbol (e.g., "AAPL", "MSFT", "GOOGL")
                pd (int): Number of days to predict (1-2)
                ld (int): Historical lookback period in days (1-5)
                st (str): Prediction strategy to use ("chronos" or "technical")

            Returns:
                Tuple[Dict, go.Figure, Dict, Dict, Dict]: A tuple containing:
                    - Trading signals dictionary
                    - Plotly figure with price and technical analysis
                    - Product metrics dictionary
                    - Risk metrics dictionary
                    - Sector metrics dictionary

            Example:
                >>> min15_analysis("AAPL", 1, 3, "chronos")
                ({'RSI': 'Neutral', 'MACD': 'Buy', ...}, <Figure>, {...}, {...}, {...})
            """
            return analyze_stock(s, "15m", pd, ld, st)

        min15_predict_btn.click(
            fn=min15_analysis,
            inputs=[min15_symbol, min15_prediction_days, min15_lookback_days, min15_strategy],
            outputs=[min15_signals, min15_plot, min15_metrics, min15_risk_metrics, min15_sector_metrics]
        )
    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(ssr_mode=False, mcp_server=True)