Spaces:
Running
on
Zero
Running
on
Zero
attempt to solve gpu error
Browse files
app.py
CHANGED
@@ -335,55 +335,100 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
335 |
|
336 |
actual_prediction_length = max(1, actual_prediction_length)
|
337 |
|
338 |
-
with torch.
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
|
356 |
-
#
|
357 |
pipe.model = pipe.model.to(device)
|
358 |
|
359 |
-
# Move
|
360 |
-
for
|
361 |
-
param.data = param.data.to(device)
|
362 |
-
for buffer in pipe.model.buffers():
|
363 |
-
buffer.data = buffer.data.to(device)
|
364 |
-
|
365 |
-
# Move all model submodules to GPU
|
366 |
-
for module in pipe.model.modules():
|
367 |
if hasattr(module, 'to'):
|
368 |
module.to(device)
|
|
|
|
|
|
|
|
|
369 |
|
370 |
-
# Move
|
371 |
-
for name, value in pipe.
|
372 |
if isinstance(value, torch.Tensor):
|
373 |
-
pipe
|
374 |
|
375 |
-
#
|
|
|
|
|
|
|
376 |
if hasattr(pipe.model, 'config'):
|
377 |
for key, value in pipe.model.config.__dict__.items():
|
378 |
if isinstance(value, torch.Tensor):
|
379 |
setattr(pipe.model.config, key, value.to(device))
|
380 |
|
381 |
-
# Move
|
382 |
-
for name, value in pipe.__dict__.items():
|
383 |
-
if isinstance(value, torch.Tensor):
|
384 |
-
setattr(pipe, name, value.to(device))
|
385 |
-
|
386 |
-
# Ensure all model states are on GPU
|
387 |
if hasattr(pipe.model, 'state_dict'):
|
388 |
state_dict = pipe.model.state_dict()
|
389 |
for key in state_dict:
|
@@ -391,64 +436,70 @@ def make_prediction(symbol: str, timeframe: str = "1d", prediction_days: int = 5
|
|
391 |
state_dict[key] = state_dict[key].to(device)
|
392 |
pipe.model.load_state_dict(state_dict)
|
393 |
|
394 |
-
# Move any additional
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
setattr(pipe.tokenizer, name, value.to(device))
|
399 |
-
|
400 |
-
# Ensure context is properly shaped and on GPU
|
401 |
-
if len(context.shape) == 1:
|
402 |
-
context = context.unsqueeze(0)
|
403 |
-
context = context.to(device)
|
404 |
-
|
405 |
-
# Ensure all inputs are on the same device
|
406 |
-
with torch.cuda.device(device):
|
407 |
-
# Force synchronization to ensure all tensors are on GPU
|
408 |
-
torch.cuda.synchronize()
|
409 |
-
|
410 |
-
# Make prediction
|
411 |
-
quantiles, mean = pipe.predict_quantiles(
|
412 |
-
context=context,
|
413 |
-
prediction_length=actual_prediction_length,
|
414 |
-
quantile_levels=[0.1, 0.5, 0.9]
|
415 |
-
)
|
416 |
|
417 |
-
|
418 |
-
|
|
|
|
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
mean = mean.detach().cpu().numpy()
|
425 |
-
|
426 |
-
# Denormalize predictions
|
427 |
-
mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
|
428 |
-
lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
429 |
-
upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
430 |
|
431 |
-
#
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
|
434 |
-
#
|
435 |
-
|
436 |
-
last_pred = mean_pred[-1]
|
437 |
-
last_std = std_pred[-1]
|
438 |
-
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
|
439 |
-
mean_pred = np.concatenate([mean_pred, extension])
|
440 |
-
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
|
441 |
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
|
448 |
except Exception as e:
|
449 |
-
print(f"Chronos prediction
|
450 |
-
print("
|
451 |
-
|
|
|
452 |
|
453 |
if strategy == "technical":
|
454 |
# Technical analysis based prediction
|
|
|
335 |
|
336 |
actual_prediction_length = max(1, actual_prediction_length)
|
337 |
|
338 |
+
with torch.amp.autocast('cuda'):
|
339 |
+
# Ensure all inputs are on GPU
|
340 |
+
context = context.to(device)
|
341 |
+
|
342 |
+
# Move quantile levels to GPU
|
343 |
+
quantile_levels = torch.tensor([0.1, 0.5, 0.9], device=device, dtype=dtype)
|
344 |
+
|
345 |
+
# Ensure prediction length is on GPU
|
346 |
+
prediction_length = torch.tensor(actual_prediction_length, device=device, dtype=torch.long)
|
347 |
+
|
348 |
+
# Force all model components to GPU
|
349 |
+
pipe.model = pipe.model.to(device)
|
350 |
+
|
351 |
+
# Move model to evaluation mode
|
352 |
+
pipe.model.eval()
|
353 |
+
|
354 |
+
# Ensure context is properly shaped and on GPU
|
355 |
+
if len(context.shape) == 1:
|
356 |
+
context = context.unsqueeze(0)
|
357 |
+
context = context.to(device)
|
358 |
+
|
359 |
+
# Move all model parameters and buffers to GPU
|
360 |
+
for param in pipe.model.parameters():
|
361 |
+
param.data = param.data.to(device)
|
362 |
+
for buffer in pipe.model.buffers():
|
363 |
+
buffer.data = buffer.data.to(device)
|
364 |
+
|
365 |
+
# Move all model submodules to GPU
|
366 |
+
for module in pipe.model.modules():
|
367 |
+
if hasattr(module, 'to'):
|
368 |
+
module.to(device)
|
369 |
+
|
370 |
+
# Move all model attributes to GPU
|
371 |
+
for name, value in pipe.model.__dict__.items():
|
372 |
+
if isinstance(value, torch.Tensor):
|
373 |
+
pipe.model.__dict__[name] = value.to(device)
|
374 |
+
|
375 |
+
# Move all model config tensors to GPU
|
376 |
+
if hasattr(pipe.model, 'config'):
|
377 |
+
for key, value in pipe.model.config.__dict__.items():
|
378 |
+
if isinstance(value, torch.Tensor):
|
379 |
+
setattr(pipe.model.config, key, value.to(device))
|
380 |
+
|
381 |
+
# Move all pipeline tensors to GPU
|
382 |
+
for name, value in pipe.__dict__.items():
|
383 |
+
if isinstance(value, torch.Tensor):
|
384 |
+
setattr(pipe, name, value.to(device))
|
385 |
+
|
386 |
+
# Ensure all model states are on GPU
|
387 |
+
if hasattr(pipe.model, 'state_dict'):
|
388 |
+
state_dict = pipe.model.state_dict()
|
389 |
+
for key in state_dict:
|
390 |
+
if isinstance(state_dict[key], torch.Tensor):
|
391 |
+
state_dict[key] = state_dict[key].to(device)
|
392 |
+
pipe.model.load_state_dict(state_dict)
|
393 |
+
|
394 |
+
# Move any additional components to GPU
|
395 |
+
if hasattr(pipe, 'tokenizer'):
|
396 |
+
for name, value in pipe.tokenizer.__dict__.items():
|
397 |
+
if isinstance(value, torch.Tensor):
|
398 |
+
setattr(pipe.tokenizer, name, value.to(device))
|
399 |
+
|
400 |
+
# Ensure all inputs are on the same device
|
401 |
+
with torch.cuda.device(device):
|
402 |
+
# Force synchronization to ensure all tensors are on GPU
|
403 |
+
torch.cuda.synchronize()
|
404 |
|
405 |
+
# Ensure all model components are on GPU
|
406 |
pipe.model = pipe.model.to(device)
|
407 |
|
408 |
+
# Move any additional tensors in the model to GPU
|
409 |
+
for name, module in pipe.model.named_modules():
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
if hasattr(module, 'to'):
|
411 |
module.to(device)
|
412 |
+
# Move any tensors in the module's __dict__
|
413 |
+
for key, value in module.__dict__.items():
|
414 |
+
if isinstance(value, torch.Tensor):
|
415 |
+
setattr(module, key, value.to(device))
|
416 |
|
417 |
+
# Move any additional tensors in the pipeline to GPU
|
418 |
+
for name, value in pipe.__dict__.items():
|
419 |
if isinstance(value, torch.Tensor):
|
420 |
+
setattr(pipe, name, value.to(device))
|
421 |
|
422 |
+
# Ensure all model components are in eval mode
|
423 |
+
pipe.model.eval()
|
424 |
+
|
425 |
+
# Move any additional tensors in the model's config to GPU
|
426 |
if hasattr(pipe.model, 'config'):
|
427 |
for key, value in pipe.model.config.__dict__.items():
|
428 |
if isinstance(value, torch.Tensor):
|
429 |
setattr(pipe.model.config, key, value.to(device))
|
430 |
|
431 |
+
# Move any additional tensors in the model's state dict to GPU
|
|
|
|
|
|
|
|
|
|
|
432 |
if hasattr(pipe.model, 'state_dict'):
|
433 |
state_dict = pipe.model.state_dict()
|
434 |
for key in state_dict:
|
|
|
436 |
state_dict[key] = state_dict[key].to(device)
|
437 |
pipe.model.load_state_dict(state_dict)
|
438 |
|
439 |
+
# Move any additional tensors in the model's buffers to GPU
|
440 |
+
for name, buffer in pipe.model.named_buffers():
|
441 |
+
if buffer is not None:
|
442 |
+
pipe.model.register_buffer(name, buffer.to(device))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
+
# Move any additional tensors in the model's parameters to GPU
|
445 |
+
for name, param in pipe.model.named_parameters():
|
446 |
+
if param is not None:
|
447 |
+
param.data = param.data.to(device)
|
448 |
|
449 |
+
# Move any additional tensors in the model's attributes to GPU
|
450 |
+
for name, value in pipe.model.__dict__.items():
|
451 |
+
if isinstance(value, torch.Tensor):
|
452 |
+
pipe.model.__dict__[name] = value.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
+
# Move any additional tensors in the model's modules to GPU
|
455 |
+
for name, module in pipe.model.named_modules():
|
456 |
+
if hasattr(module, 'to'):
|
457 |
+
module.to(device)
|
458 |
+
# Move any tensors in the module's __dict__
|
459 |
+
for key, value in module.__dict__.items():
|
460 |
+
if isinstance(value, torch.Tensor):
|
461 |
+
setattr(module, key, value.to(device))
|
462 |
|
463 |
+
# Force synchronization again to ensure all tensors are on GPU
|
464 |
+
torch.cuda.synchronize()
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
+
# Make prediction
|
467 |
+
quantiles, mean = pipe.predict_quantiles(
|
468 |
+
context=context,
|
469 |
+
prediction_length=actual_prediction_length,
|
470 |
+
quantile_levels=[0.1, 0.5, 0.9]
|
471 |
+
)
|
472 |
+
|
473 |
+
if quantiles is None or mean is None:
|
474 |
+
raise ValueError("Chronos returned empty prediction")
|
475 |
+
|
476 |
+
print(f"Quantiles shape: {quantiles.shape}, Mean shape: {mean.shape}")
|
477 |
+
|
478 |
+
# Convert to numpy arrays
|
479 |
+
quantiles = quantiles.detach().cpu().numpy()
|
480 |
+
mean = mean.detach().cpu().numpy()
|
481 |
+
|
482 |
+
# Denormalize predictions
|
483 |
+
mean_pred = scaler.inverse_transform(mean.reshape(-1, 1)).flatten()
|
484 |
+
lower_bound = scaler.inverse_transform(quantiles[0, :, 0].reshape(-1, 1)).flatten()
|
485 |
+
upper_bound = scaler.inverse_transform(quantiles[0, :, 2].reshape(-1, 1)).flatten()
|
486 |
+
|
487 |
+
# Calculate standard deviation from quantiles
|
488 |
+
std_pred = (upper_bound - lower_bound) / (2 * 1.645)
|
489 |
+
|
490 |
+
# If we had to limit the prediction length, extend the prediction
|
491 |
+
if actual_prediction_length < prediction_days:
|
492 |
+
last_pred = mean_pred[-1]
|
493 |
+
last_std = std_pred[-1]
|
494 |
+
extension = np.array([last_pred * (1 + np.random.normal(0, last_std, prediction_days - actual_prediction_length))])
|
495 |
+
mean_pred = np.concatenate([mean_pred, extension])
|
496 |
+
std_pred = np.concatenate([std_pred, np.full(prediction_days - actual_prediction_length, last_std)])
|
497 |
|
498 |
except Exception as e:
|
499 |
+
print(f"Chronos prediction error: {str(e)}")
|
500 |
+
print(f"Error type: {type(e)}")
|
501 |
+
print(f"Error details: {str(e)}")
|
502 |
+
raise
|
503 |
|
504 |
if strategy == "technical":
|
505 |
# Technical analysis based prediction
|