Tonic's picture
add Pixtral
c6cb576 unverified
raw
history blame
8.59 kB
import os
import gradio as gr
from vllm import LLM, SamplingParams
from PIL import Image
from io import BytesIO
import base64
import requests
from huggingface_hub import login
import torch
import torch.nn.functional as F
import spaces
import json
import gradio as gr
from huggingface_hub import snapshot_download
import os
# from loadimg import load_img
import traceback
login(os.environ.get("HUGGINGFACE_TOKEN"))
repo_id = "mistralai/Pixtral-12B-2409"
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
max_tokens_per_img = 4096
max_img_per_msg = 5
title = "# **WIP / DEMO** 🙋🏻‍♂️Welcome to Tonic's Pixtral Model Demo"
description = """
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN")
model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409", token=HUGGINGFACE_TOKEN)
with open(f'{model_path}/params.json', 'r') as f:
params = json.load(f)
with open(f'{model_path}/tekken.json', 'r') as f:
tokenizer_config = json.load(f)
@spaces.GPU()
def initialize_llm():
try:
llm = LLM(
model=repo_id,
tokenizer_mode="mistral",
max_model_len=65536,
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img,
limit_mm_per_prompt={"image": max_img_per_msg}
)
return llm
except Exception as e:
print("LLM initialization failed:", e)
return None
sampling_params = SamplingParams(max_tokens=8192)
llm = initialize_llm()
def encode_image(image: Image.Image, image_format="PNG") -> str:
im_file = BytesIO()
image.save(im_file, format=image_format)
im_bytes = im_file.getvalue()
im_64 = base64.b64encode(im_bytes).decode("utf-8")
return im_64
@spaces.GPU()
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
if llm is None:
return "Error: LLM initialization failed. Please try again later."
try:
image = Image.open(BytesIO(requests.get(image_url).content))
image = image.resize((3844, 2408))
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
messages = [
{
"role": "user",
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
return outputs[0].outputs[0].text
except Exception as e:
return f"Error during inference: {e}"
@spaces.GPU()
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
if llm is None:
return "Error: LLM initialization failed. Please try again later."
try:
image1 = Image.open(BytesIO(requests.get(image1_url).content))
image2 = Image.open(BytesIO(requests.get(image2_url).content))
image1 = image1.resize((3844, 2408))
image2 = image2.resize((3844, 2408))
new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": new_image1_url}},
{"type": "image_url", "image_url": {"url": new_image2_url}}
]
},
]
outputs = llm.chat(messages, sampling_params=sampling_params)
return outputs[0].outputs[0].text
except Exception as e:
return f"Error during image comparison: {e}"
@spaces.GPU()
def calculate_image_similarity(image1_url, image2_url):
if llm is None:
return "Error: LLM initialization failed. Please try again later."
try:
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
image1 = image1.resize((224, 224)) # Resize to match model input size
image2 = image2.resize((224, 224))
image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0
with torch.no_grad():
embedding1 = llm.model.vision_encoder([image1_tensor])
embedding2 = llm.model.vision_encoder([image2_tensor])
similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()
return similarity
except Exception as e:
return f"Error during image similarity calculation: {e}"
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown("## How it works")
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).")
gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.")
gr.Markdown("3. The encoded image is used for text generation or similarity comparison.")
gr.Markdown(
"""
## How to use
1. For Image-to-Text Generation:
- Enter the URL of an image
- Provide a prompt describing what you want to know about the image
- Click "Generate" to get the model's response
2. For Image Comparison:
- Enter URLs for two images you want to compare
- Provide a prompt asking about the comparison
- Click "Compare" to get the model's analysis
3. For Image Similarity:
- Enter URLs for two images you want to compare
- Click "Calculate Similarity" to get a similarity score between 0 and 1
"""
)
gr.Markdown(description)
with gr.Tabs():
with gr.TabItem("Image-to-Text Generation"):
with gr.Row():
image_url = gr.Text(label="Image URL")
prompt = gr.Text(label="Prompt")
generate_button = gr.Button("Generate")
output = gr.Text(label="Generated Text")
generate_button.click(infer, inputs=[image_url, prompt], outputs=output)
with gr.TabItem("Image Comparison"):
with gr.Row():
image1_url = gr.Text(label="Image 1 URL")
image2_url = gr.Text(label="Image 2 URL")
comparison_prompt = gr.Text(label="Comparison Prompt")
compare_button = gr.Button("Compare")
comparison_output = gr.Text(label="Comparison Result")
compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output)
with gr.TabItem("Image Similarity"):
with gr.Row():
sim_image1_url = gr.Text(label="Image 1 URL")
sim_image2_url = gr.Text(label="Image 2 URL")
similarity_button = gr.Button("Calculate Similarity")
similarity_output = gr.Number(label="Similarity Score")
similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output)
gr.Markdown("## Model Details")
gr.Markdown(f"- Model Dimension: {params['dim']}")
gr.Markdown(f"- Number of Layers: {params['n_layers']}")
gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}")
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}")
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}")
gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}")
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}")
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}")
if __name__ == "__main__":
demo.launch()