Spaces:
Paused
Paused
import os | |
import gradio as gr | |
from vllm import LLM, SamplingParams | |
from PIL import Image | |
from io import BytesIO | |
import base64 | |
import requests | |
from huggingface_hub import login | |
import torch | |
import torch.nn.functional as F | |
import spaces | |
import json | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
import os | |
# from loadimg import load_img | |
import traceback | |
login(os.environ.get("HUGGINGFACE_TOKEN")) | |
repo_id = "mistralai/Pixtral-12B-2409" | |
sampling_params = SamplingParams(max_tokens=8192, temperature=0.7) | |
max_tokens_per_img = 4096 | |
max_img_per_msg = 5 | |
title = "# **WIP / DEMO** 🙋🏻♂️Welcome to Tonic's Pixtral Model Demo" | |
description = """ | |
### Join us : | |
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗 | |
""" | |
HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") | |
model_path = snapshot_download(repo_id="mistralai/Pixtral-12B-2409", token=HUGGINGFACE_TOKEN) | |
with open(f'{model_path}/params.json', 'r') as f: | |
params = json.load(f) | |
with open(f'{model_path}/tekken.json', 'r') as f: | |
tokenizer_config = json.load(f) | |
def initialize_llm(): | |
try: | |
llm = LLM( | |
model=repo_id, | |
tokenizer_mode="mistral", | |
max_model_len=65536, | |
max_num_batched_tokens=max_img_per_msg * max_tokens_per_img, | |
limit_mm_per_prompt={"image": max_img_per_msg} | |
) | |
return llm | |
except Exception as e: | |
print("LLM initialization failed:", e) | |
return None | |
sampling_params = SamplingParams(max_tokens=8192) | |
llm = initialize_llm() | |
def encode_image(image: Image.Image, image_format="PNG") -> str: | |
im_file = BytesIO() | |
image.save(im_file, format=image_format) | |
im_bytes = im_file.getvalue() | |
im_64 = base64.b64encode(im_bytes).decode("utf-8") | |
return im_64 | |
def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)): | |
if llm is None: | |
return "Error: LLM initialization failed. Please try again later." | |
try: | |
image = Image.open(BytesIO(requests.get(image_url).content)) | |
image = image.resize((3844, 2408)) | |
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}" | |
messages = [ | |
{ | |
"role": "user", | |
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}] | |
}, | |
] | |
outputs = llm.chat(messages, sampling_params=sampling_params) | |
return outputs[0].outputs[0].text | |
except Exception as e: | |
return f"Error during inference: {e}" | |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)): | |
if llm is None: | |
return "Error: LLM initialization failed. Please try again later." | |
try: | |
image1 = Image.open(BytesIO(requests.get(image1_url).content)) | |
image2 = Image.open(BytesIO(requests.get(image2_url).content)) | |
image1 = image1.resize((3844, 2408)) | |
image2 = image2.resize((3844, 2408)) | |
new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}" | |
new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}" | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": new_image1_url}}, | |
{"type": "image_url", "image_url": {"url": new_image2_url}} | |
] | |
}, | |
] | |
outputs = llm.chat(messages, sampling_params=sampling_params) | |
return outputs[0].outputs[0].text | |
except Exception as e: | |
return f"Error during image comparison: {e}" | |
def calculate_image_similarity(image1_url, image2_url): | |
if llm is None: | |
return "Error: LLM initialization failed. Please try again later." | |
try: | |
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB') | |
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB') | |
image1 = image1.resize((224, 224)) # Resize to match model input size | |
image2 = image2.resize((224, 224)) | |
image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0 | |
image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0 | |
with torch.no_grad(): | |
embedding1 = llm.model.vision_encoder([image1_tensor]) | |
embedding2 = llm.model.vision_encoder([image2_tensor]) | |
similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item() | |
return similarity | |
except Exception as e: | |
return f"Error during image similarity calculation: {e}" | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
gr.Markdown("## How it works") | |
gr.Markdown("1. The image is processed by a Vision Encoder using 2D ROPE (Rotary Position Embedding).") | |
gr.Markdown("2. The encoder uses SiLU activation in its feed-forward layers.") | |
gr.Markdown("3. The encoded image is used for text generation or similarity comparison.") | |
gr.Markdown( | |
""" | |
## How to use | |
1. For Image-to-Text Generation: | |
- Enter the URL of an image | |
- Provide a prompt describing what you want to know about the image | |
- Click "Generate" to get the model's response | |
2. For Image Comparison: | |
- Enter URLs for two images you want to compare | |
- Provide a prompt asking about the comparison | |
- Click "Compare" to get the model's analysis | |
3. For Image Similarity: | |
- Enter URLs for two images you want to compare | |
- Click "Calculate Similarity" to get a similarity score between 0 and 1 | |
""" | |
) | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.TabItem("Image-to-Text Generation"): | |
with gr.Row(): | |
image_url = gr.Text(label="Image URL") | |
prompt = gr.Text(label="Prompt") | |
generate_button = gr.Button("Generate") | |
output = gr.Text(label="Generated Text") | |
generate_button.click(infer, inputs=[image_url, prompt], outputs=output) | |
with gr.TabItem("Image Comparison"): | |
with gr.Row(): | |
image1_url = gr.Text(label="Image 1 URL") | |
image2_url = gr.Text(label="Image 2 URL") | |
comparison_prompt = gr.Text(label="Comparison Prompt") | |
compare_button = gr.Button("Compare") | |
comparison_output = gr.Text(label="Comparison Result") | |
compare_button.click(compare_images, inputs=[image1_url, image2_url, comparison_prompt], outputs=comparison_output) | |
with gr.TabItem("Image Similarity"): | |
with gr.Row(): | |
sim_image1_url = gr.Text(label="Image 1 URL") | |
sim_image2_url = gr.Text(label="Image 2 URL") | |
similarity_button = gr.Button("Calculate Similarity") | |
similarity_output = gr.Number(label="Similarity Score") | |
similarity_button.click(calculate_image_similarity, inputs=[sim_image1_url, sim_image2_url], outputs=similarity_output) | |
gr.Markdown("## Model Details") | |
gr.Markdown(f"- Model Dimension: {params['dim']}") | |
gr.Markdown(f"- Number of Layers: {params['n_layers']}") | |
gr.Markdown(f"- Number of Attention Heads: {params['n_heads']}") | |
gr.Markdown(f"- Vision Encoder Hidden Size: {params['vision_encoder']['hidden_size']}") | |
gr.Markdown(f"- Number of Vision Encoder Layers: {params['vision_encoder']['num_hidden_layers']}") | |
gr.Markdown(f"- Number of Vision Encoder Attention Heads: {params['vision_encoder']['num_attention_heads']}") | |
gr.Markdown(f"- Image Size: {params['vision_encoder']['image_size']}x{params['vision_encoder']['image_size']}") | |
gr.Markdown(f"- Patch Size: {params['vision_encoder']['patch_size']}x{params['vision_encoder']['patch_size']}") | |
if __name__ == "__main__": | |
demo.launch() | |