Spaces:
Paused
Paused
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel, PeftConfig | |
import torch | |
import gradio as gr | |
import json | |
import os | |
import shutil | |
import requests | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#Define variables | |
temperature=0.4 | |
max_new_tokens=240 | |
top_p=0.92 | |
repetition_penalty=1.7 | |
max_length=2048 | |
# Use model IDs as variables | |
base_model_id = "tiiuae/falcon-7b-instruct" | |
model_directory = "Tonic/GaiaMiniMed" | |
# Instantiate the Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = 'left' | |
# Load the GaiaMiniMed model with the specified configuration | |
# Load the Peft model with a specific configuration | |
# Specify the configuration class for the model | |
model_config = AutoConfig.from_pretrained(base_model_id) | |
# Load the PEFT model with the specified configuration | |
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config) | |
peft_model = PeftModel.from_pretrained(peft_model, model_directory) | |
# Class to encapsulate the Falcon chatbot | |
class FalconChatBot: | |
def __init__(self, system_prompt="You are an expert medical analyst:"): | |
self.system_prompt = system_prompt | |
def process_history(self, history): | |
if history is None: | |
return [] | |
# Ensure that history is a list of dictionaries | |
if not isinstance(history, list): | |
return [] | |
# Filter out special commands from the history | |
filtered_history = [] | |
for message in history: | |
if isinstance(message, dict): | |
user_message = message.get("user", "") | |
assistant_message = message.get("assistant", "") | |
# Check if the user_message is not a special command | |
if not user_message.startswith("Falcon:"): | |
filtered_history.append({"user": user_message, "assistant": assistant_message}) | |
return filtered_history | |
def predict(self, user_message, assistant_message, history, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty): | |
# Process the history to remove special commands | |
processed_history = self.process_history(history) | |
# Combine the user and assistant messages into a conversation | |
conversation = f"{self.system_prompt}\nFalcon: {assistant_message if assistant_message else ''} User: {user_message}\nFalcon:\n" | |
# Encode the conversation using the tokenizer | |
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False) | |
# Generate a response using the Falcon model | |
response = peft_model.generate(input_ids=input_ids, max_length=max_length, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True) | |
# Decode the generated response to text | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
# Append the Falcon-like conversation to the history | |
self.history.append(conversation) | |
self.history.append(response_text) | |
return response_text | |
# Create the Falcon chatbot instance | |
falcon_bot = FalconChatBot() | |
# Define the Gradio interface | |
title = "👋🏻Welcome to Tonic's 🦅Falcon's Medical👨🏻⚕️Expert Chat🚀" | |
description = "You can use this Space to test out the GaiaMiniMed model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
examples = [ | |
[ | |
"Assistant is a public health and medical expert named Gaia ready to help the user.", | |
"Hi there, I have a question!", | |
"My name is Gaia, I'm a health and sanitation expert ready to answer your medical questions.", | |
"Assistant is a medical and sanitation question expert trained to answer medical questions", 0.4, 700, 0.90, 1.9 | |
] | |
] | |
additional_inputs=[ | |
gr.Textbox("", label="Optional system prompt"), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=3000, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.01, | |
maximum=0.99, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
iface = gr.Interface( | |
fn=falcon_bot.predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=[ | |
gr.inputs.Textbox(label="System Prompt", type="text", lines=2), | |
gr.inputs.Textbox(label="User Message", type="text", lines=3), | |
gr.inputs.Textbox(label="Assistant Message", type="text", lines=2), | |
] + additional_inputs, | |
outputs="text", | |
theme="ParityError/Anime" | |
) | |
# Launch the Gradio interface for the Falcon model | |
iface.launch() |