File size: 5,096 Bytes
3d446a2
 
488aaf5
 
3d446a2
 
cd2da70
3d446a2
488aaf5
 
 
53ad954
2fae51b
488aaf5
 
 
 
3d446a2
8f09b36
488aaf5
 
3d446a2
 
 
 
 
 
488aaf5
 
8f09b36
3d446a2
8f09b36
488aaf5
 
 
3d446a2
488aaf5
3d446a2
488aaf5
cc1341e
db96f54
488aaf5
f27b40d
99fc581
bbaa57b
f27b40d
488aaf5
db96f54
488aaf5
db96f54
 
 
488aaf5
 
bbaa57b
 
db96f54
5e0944f
bbaa57b
488aaf5
d89af39
 
 
 
 
 
bbaa57b
d89af39
 
3d446a2
a1eca34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import gradio as gr
import inversion
import numpy as np
from PIL import Image
import sa_handler

device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, scheduler=scheduler).to(device)

def run(image, src_style, src_prompt, prompts, shared_score_shift, shared_score_scale, guidance_scale, num_inference_steps, seed, large=True):
    prompts = prompts.splitlines()
    dim, d = (1024, 128) if large else (512, 64)
    image = image.resize((dim, dim))
    x0 = np.array(image)
    zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
    offset = min(5, len(zts) - 1)
    prompts.insert(0, src_prompt)
    shared_score_shift = np.log(shared_score_shift)
    handler = sa_handler.Handler(pipeline)
    sa_args = sa_handler.StyleAlignedArgs(
        share_group_norm=True, share_layer_norm=True, share_attention=True,
        adain_queries=True, adain_keys=True, adain_values=False,
        shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
    handler.register(sa_args)
    for i in range(1, len(prompts)):
        prompts[i] = f'{prompts[i]}, {src_style}.'
    zT, inversion_callback = inversion.make_inversion_callback(zts, offset=offset)
    g_cpu = torch.Generator(device='cpu')
    
    if seed > 0:
        g_cpu.manual_seed(seed)
    latents = torch.randn(len(prompts), 4, d, d, device='cpu', generator=g_cpu, dtype=pipeline.unet.dtype,).to(device)
    latents[0] = zT
    images_a = pipeline(prompts, latents=latents, callback_on_step_end=inversion_callback, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images
    handler.remove()
    torch.cuda.empty_cache()
    return images_a

with gr.Blocks() as demo:
    gr.Markdown("""# Welcome to🌟Tonic's🤵🏻Style📐Align 
Here you can generate images with a style from a reference image using [transfer style from sdxl](https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl). Add a reference picture, describe the style and add prompts to generate images in that style. It's the most interesting with your own art! You can also use [stabilityai/stable-diffusion-xl-base-1.0] by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/TonicsStyleAlign?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)
""")
    with gr.Row():
        image_input = gr.Image(label="Reference image", type="pil")
    with gr.Row():
        style_input = gr.Textbox(label="Describe the reference style")
        image_desc_input = gr.Textbox(label="Describe the reference image")
        prompts_input = gr.Textbox(label="Prompts to generate images (separate with new lines)", lines=5)
    with gr.Accordion(label="Advanced Settings"):
        with gr.Row():
            shared_score_shift_input = gr.Slider(value=1.5, label="shared_score_shift", minimum=1.0, maximum=2.0, step=0.05)
            shared_score_scale_input = gr.Slider(value=0.5, label="shared_score_scale", minimum=0.0, maximum=1.0, step=0.05)
            guidance_scale_input = gr.Slider(value=10.0, label="guidance_scale", minimum=5.0, maximum=20.0, step=1)
            num_inference_steps_input = gr.Slider(value=12, label="num_inference_steps", minimum=9, maximum=24, step=1)
            seed_input = gr.Slider(value=0, label="seed", minimum=0, maximum=1000000, step=42)
    with gr.Row():
        run_button = gr.Button("Generate Images")
    with gr.Row():
        output_gallery = gr.Gallery()

    run_button.click(
        run,
        inputs=[image_input, style_input, image_desc_input, prompts_input, shared_score_shift_input, shared_score_scale_input, guidance_scale_input, num_inference_steps_input, seed_input],
        outputs=output_gallery
    )

demo.launch()