Spaces:
Paused
Paused
File size: 5,937 Bytes
3d446a2 488aaf5 3d446a2 cd2da70 406fd03 3d446a2 488aaf5 53ad954 406fd03 2fae51b 488aaf5 3d446a2 8f09b36 488aaf5 3d446a2 488aaf5 8f09b36 3d446a2 8f09b36 488aaf5 3d446a2 488aaf5 3d446a2 488aaf5 cc1341e db96f54 488aaf5 f27b40d 99fc581 0687eaf f27b40d 488aaf5 db96f54 488aaf5 db96f54 488aaf5 bbaa57b db96f54 9befef5 bbaa57b 488aaf5 d89af39 bbaa57b d89af39 621be50 ffc5fa7 621be50 12522c4 621be50 c5acb38 621be50 bad8596 621be50 a1eca34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import gradio as gr
import inversion
import numpy as np
from PIL import Image
import sa_handler
# import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, scheduler=scheduler).to(device)
# @spaces.GPU
def run(image, src_style, src_prompt, prompts, shared_score_shift, shared_score_scale, guidance_scale, num_inference_steps, seed, large=True):
prompts = prompts.splitlines()
dim, d = (1024, 128) if large else (512, 64)
image = image.resize((dim, dim))
x0 = np.array(image)
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
offset = min(5, len(zts) - 1)
prompts.insert(0, src_prompt)
shared_score_shift = np.log(shared_score_shift)
handler = sa_handler.Handler(pipeline)
sa_args = sa_handler.StyleAlignedArgs(
share_group_norm=True, share_layer_norm=True, share_attention=True,
adain_queries=True, adain_keys=True, adain_values=False,
shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
handler.register(sa_args)
for i in range(1, len(prompts)):
prompts[i] = f'{prompts[i]}, {src_style}.'
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=offset)
g_cpu = torch.Generator(device='cpu')
if seed > 0:
g_cpu.manual_seed(seed)
latents = torch.randn(len(prompts), 4, d, d, device='cpu', generator=g_cpu, dtype=pipeline.unet.dtype,).to(device)
latents[0] = zT
images_a = pipeline(prompts, latents=latents, callback_on_step_end=inversion_callback, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images
handler.remove()
torch.cuda.empty_cache()
return images_a
with gr.Blocks() as demo:
gr.Markdown("""# Welcome to🌟Tonic's🤵🏻Style📐Align
Here you can generate images with a style from a reference image using [transfer style from sdxl](https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl). Add a reference picture, describe the style and add prompts to generate images in that style. It's the most interesting with your own art! You can also use [stabilityai/stable-diffusion-xl-base-1.0] by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/TonicsStyleAlign?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [DataTonic](https://github.com/Tonic-AI/DataTonic) 🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
""")
with gr.Row():
image_input = gr.Image(label="Reference image", type="pil")
with gr.Row():
style_input = gr.Textbox(label="Describe the reference style")
image_desc_input = gr.Textbox(label="Describe the reference image")
prompts_input = gr.Textbox(label="Prompts to generate images (separate with new lines)", lines=5)
with gr.Accordion(label="Advanced Settings"):
with gr.Row():
shared_score_shift_input = gr.Slider(value=1.5, label="shared_score_shift", minimum=1.0, maximum=2.0, step=0.05)
shared_score_scale_input = gr.Slider(value=0.5, label="shared_score_scale", minimum=0.0, maximum=1.0, step=0.05)
guidance_scale_input = gr.Slider(value=10.0, label="guidance_scale", minimum=5.0, maximum=20.0, step=1)
num_inference_steps_input = gr.Slider(value=12, label="num_inference_steps", minimum=12, maximum=300, step=1)
seed_input = gr.Slider(value=0, label="seed", minimum=0, maximum=1000000, step=42)
with gr.Row():
run_button = gr.Button("Generate Images")
with gr.Row():
output_gallery = gr.Gallery()
run_button.click(
run,
inputs=[image_input, style_input, image_desc_input, prompts_input, shared_score_shift_input, shared_score_scale_input, guidance_scale_input, num_inference_steps_input, seed_input],
outputs=output_gallery
)
examples = [
["download (8).jpg", "picasso blue period", "a portrait of a man playing guitar",
"an astronaut holding a cocktail glass\nan astronaut in space holding a laptop\nan astronaut in space with an explosion of iridescent powder",
1.7, 0.7, 20, 144, 245112]
]
gr.Examples(
examples=examples,
inputs=[image_input, style_input, image_desc_input, prompts_input, shared_score_shift_input, shared_score_scale_input, guidance_scale_input, num_inference_steps_input, seed_input],
outputs=output_gallery,
fn=run,
cache_examples=True
)
demo.launch() |