seriatim / app.py
Tonyivan's picture
Update app.py
7c6c308 verified
raw
history blame
3.8 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
from typing import List
import numpy as np
app = FastAPI()
# Load models
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
question_model = "deepset/tinyroberta-squad2"
nlp = pipeline('question-answering', model=question_model, tokenizer=question_model)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Request models
class ModifyQueryRequest(BaseModel):
query_string: str
class ModifyQueryRequest_v3(BaseModel):
query_string_list: List[str]
class AnswerQuestionRequest(BaseModel):
question: str
context: List[str]
locations: List[str]
class T5QuestionRequest(BaseModel):
context: str
# Response models
class ModifyQueryResponse(BaseModel):
embeddings: List[List[float]]
class AnswerQuestionResponse(BaseModel):
answer: str
locations: List[str]
class T5Response(BaseModel):
answer: str
# API endpoints
@app.post("/modify_query", response_model=ModifyQueryResponse)
async def modify_query(request: ModifyQueryRequest):
try:
# Generate embeddings
embeddings = model.encode([request.query_string])
return ModifyQueryResponse(embeddings=[emb.tolist() for emb in embeddings])
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in modifying query: {str(e)}")
@app.post("/modify_query_v3", response_model=ModifyQueryResponse)
async def modify_query_v3(request: ModifyQueryRequest_v3):
try:
# Generate embeddings for a list of query strings
embeddings = model.encode(request.query_string_list)
return ModifyQueryResponse(embeddings=[emb.tolist() for emb in embeddings])
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in modifying query v3: {str(e)}")
@app.post("/answer_question", response_model=AnswerQuestionResponse)
async def answer_question(request: AnswerQuestionRequest):
try:
res_locs = []
context_string = ''
corpus_embeddings = model.encode(request.context, convert_to_tensor=True)
query_embeddings = model.encode(request.question, convert_to_tensor=True)
hits = util.semantic_search(query_embeddings, corpus_embeddings)
# Collect relevant contexts
for hit in hits[0]:
if hit['score'] > 0.4:
loc = hit['corpus_id']
res_locs.append(request.locations[loc])
context_string += request.context[loc] + ' '
# If no relevant contexts are found
if not res_locs:
answer = "Sorry, I couldn't find any results for your query. Please try again!"
else:
# Use the question-answering pipeline
QA_input = {
'question': request.question,
'context': context_string.replace('\n', ' ')
}
result = nlp(QA_input)
answer = result['answer']
return AnswerQuestionResponse(answer=answer, locations=res_locs)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in answering question: {str(e)}")
@app.post("/t5answer", response_model=T5Response)
async def t5answer(request: T5QuestionRequest):
try:
# Summarize the context
response = summarizer(request.context, max_length=130, min_length=30, do_sample=False)
return T5Response(answer=response[0]["summary_text"])
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in T5 summarization: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)