Spaces:
Sleeping
Sleeping
File size: 17,754 Bytes
41173b4 e3c8762 41173b4 a53f165 e3c8762 a53f165 41173b4 e3c8762 41173b4 a53f165 5a9e05e a53f165 e3c8762 41173b4 d0bb838 41173b4 8724d8b 41173b4 e3c8762 41173b4 25272b8 3a4e096 41173b4 8724d8b a53f165 a729a18 a53f165 8724d8b d0bb838 823be8e d0bb838 8724d8b 4b0e12e 31c70a6 4b0e12e 31c70a6 4b0e12e 31c70a6 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e 25272b8 4b0e12e 25272b8 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 4b0e12e d0bb838 823be8e 4b0e12e 823be8e 4b0e12e 823be8e 4b0e12e 823be8e 26485d2 823be8e 26485d2 823be8e 26485d2 9889912 823be8e 5a9e05e 823be8e 9889912 823be8e 9889912 823be8e 9889912 823be8e 9889912 823be8e 26485d2 823be8e bd7b6e0 823be8e 26485d2 823be8e a729a18 7214c18 41173b4 7214c18 41173b4 8724d8b 41173b4 8724d8b 5a9e05e 7214c18 a53f165 a729a18 a53f165 41173b4 5a9e05e a53f165 8724d8b 7214c18 a729a18 7214c18 d0bb838 7214c18 5a9e05e 41173b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/b4/lwfgccm95kqd2skcwvrt2fr00000gn/T/ipykernel_289/426293969.py:99: FutureWarning:\n",
"\n",
"Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
"\n"
]
},
{
"data": {
"text/html": [
"\n",
" <iframe\n",
" width=\"100%\"\n",
" height=\"650\"\n",
" src=\"http://0.0.0.0:8050/\"\n",
" frameborder=\"0\"\n",
" allowfullscreen\n",
" \n",
" ></iframe>\n",
" "
],
"text/plain": [
"<IPython.lib.display.IFrame at 0x2a9f7d000>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/ruimelo/Documents/GitHub/eda/app/core.py:21: SettingWithCopyWarning:\n",
"\n",
"\n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Text Value: None\n"
]
}
],
"source": [
"import os\n",
"import plotly.express as px\n",
"import plotly.graph_objects as go\n",
"import pandas as pd\n",
"from dash import Dash, html, dcc, Input, Output, callback, dash_table\n",
"import plotly.express as px\n",
"import numpy as np\n",
"from plotly.subplots import make_subplots\n",
"import core\n",
"\n",
"df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')\n",
"debug = False\n",
"\n",
"external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']\n",
"\n",
"app = Dash(__name__, external_stylesheets=external_stylesheets)\n",
"\n",
"app.layout = html.Div([\n",
" dcc.Location(id='url', refresh=False),\n",
" html.Div(id='page-content')\n",
"], style={\n",
" 'background-color': '#333', # Dark background color\n",
" 'color': '#fff', # Text color\n",
" 'min-height': '100vh', # Ensure it covers the full viewport height\n",
" 'padding': '20px' # Add some padding\n",
"})\n",
"\n",
"server = app.server\n",
"\n",
"raw_wine_similarity_df = pd.read_csv('data/sogrape_wine.csv')\n",
"raw_wine_similarity_df = raw_wine_similarity_df.iloc[:3, :]\n",
"\n",
"wine_similarity_df = pd.read_csv('data/wine_similarity.csv')\n",
"wine_list = wine_similarity_df['NAME'].unique()\n",
"# wine_list.sort()\n",
"geo = pd.read_csv('data/processed_wineyards.csv')\n",
"wine_regions=list(geo['Region'].unique()) + ['all']\n",
"wine_country = list(geo['Country'].unique()) + ['all']\n",
"# local_type = list(geo['LOCAL TYPE'].unique()) + ['all']\n",
"\n",
"user_rating_df = pd.read_csv('data/simulated_ratings.csv')\n",
"user_rating_df.set_index('user', inplace=True)\n",
"user_rating_df['user'] = user_rating_df.index\n",
"user_ids = user_rating_df['user']\n",
"\n",
"raw_ratings = pd.read_csv('data/raw_simulated_ratings.csv')\n",
"# crop to 5 rows and 7 columns\n",
"raw_ratings = raw_ratings.iloc[:5, :7]\n",
"\n",
"TEMPORARY_WINE_RECOMMENDATION_FORM_INFO = {}\n",
"\n",
"\n",
"\n",
"## Layout ##\n",
"dashboard_layout = html.Div([\n",
" html.H1(children='Wineyards around the world', style={'textAlign': 'center', 'color': '#fff', 'padding': '20px'}),\n",
" \n",
" html.Div(\n",
" [\n",
" html.Div(\n",
" [\n",
" html.H4(children='Country', style={'textAlign': 'center', 'color': '#fff'}),\n",
" dcc.Dropdown(wine_country, wine_country[-1], id='dropdown-wc', style={'color': '#000'}),\n",
" ], className='six columns', style={'padding': '10px'}\n",
" ),\n",
" html.Div(\n",
" [\n",
" html.H4(children='Region', style={'textAlign': 'center', 'color': '#fff'}),\n",
" dcc.Dropdown(['all'], 'all', id='dropdown-wr', style={'color': '#000'}),\n",
" ], className='six columns', style={'padding': '10px'}\n",
" )\n",
" ], className='row', style={'background-color': '#444', 'border-radius': '10px', 'margin': '10px'}),\n",
" \n",
" dcc.Graph(id='world-map-fig', style={'margin': '20px'}),\n",
" \n",
" html.Div(\n",
" [\n",
" html.Div(\n",
" [\n",
" html.H4(children='Wine Recommender', style={'textAlign': 'center', 'color': '#fff'}),\n",
" dcc.Dropdown(wine_list, wine_list[0], id='dropdown-selection', style={'color': '#000'}),\n",
" html.P(id='wine-recommendation', style={'textAlign': 'center', 'color': '#fff'}),\n",
" ], className='three columns', style={'padding': '10px'}\n",
" ),\n",
" html.Div(\n",
" [\n",
" html.P(children='Data Example', style={'textAlign': 'left', 'color': '#fff'}),\n",
" dash_table.DataTable(\n",
" data=raw_wine_similarity_df.to_dict('records'),\n",
" columns=[{'id': c, 'name': c} for c in raw_wine_similarity_df.columns],\n",
" style_header={'backgroundColor': '#444', 'color': '#fff'},\n",
" style_cell={'backgroundColor': '#333', 'color': '#fff'}\n",
" )\n",
" ], className='nine columns', style={'padding': '10px'}\n",
" )\n",
" ], className='row', style={'background-color': '#444', 'border-radius': '10px', 'margin': '10px'}),\n",
" \n",
" html.H4(children=\"Wine Recommender based on users' feedback\", style={'textAlign': 'center', 'color': '#fff', 'padding': '20px'}),\n",
" \n",
" html.Div(\n",
" [\n",
" html.Div(\n",
" [\n",
" dcc.Dropdown(user_ids, user_ids[0], id='dropdown-selection-user', style={'color': '#000'}),\n",
" html.P(id='wine-recommendation-from-user', style={'textAlign': 'center', 'color': '#fff'}),\n",
" ], className='six columns', style={'padding': '10px'}\n",
" ),\n",
" html.Div(\n",
" [\n",
" html.P(children='Data Example', style={'textAlign': 'left', 'color': '#fff'}),\n",
" dash_table.DataTable(\n",
" data=raw_ratings.to_dict('records'),\n",
" columns=[{'id': c, 'name': c} for c in raw_ratings.columns],\n",
" style_header={'backgroundColor': '#444', 'color': '#fff'},\n",
" style_cell={'backgroundColor': '#333', 'color': '#fff'}\n",
" )\n",
" ], className='six columns', style={'padding': '10px'}\n",
" ),\n",
" ], className='row', style={'background-color': '#444', 'border-radius': '10px', 'margin': '10px'}),\n",
" \n",
" html.H4(children=\"Wine Preferences Form\", style={'textAlign': 'center', 'color': '#fff', 'padding': '20px'}),\n",
" \n",
" html.Div(\n",
" [\n",
" html.Div(\n",
" [\n",
" dcc.Dropdown(wine_list, wine_list[0], id='dropdown-selection-wine-form', style={'color': '#000'}),\n",
" dcc.Input(id='input-wine-rating', type='number', placeholder='Enter wine rating', min=1, max=5, style={'margin-top': '10px'}),\n",
" ], className='six columns', style={'padding': '10px'}\n",
" ),\n",
" html.Div(\n",
" [\n",
" html.Button('Submit', id='submit-button', n_clicks=0, style={'margin-top': '10px', 'background-color': '#444', 'color': '#fff'}),\n",
" ], className='six columns', style={'padding': '10px'}\n",
" ),\n",
" ], className='row', style={'background-color': '#444', 'border-radius': '10px', 'margin': '10px'}),\n",
" \n",
" html.Div(id='recommended-wine-rating-info', style={'textAlign': 'center', 'color': '#fff', 'padding': '10px'}),\n",
" html.P(id='recommend-wine-from-form-text', style={'textAlign': 'center', 'color': '#fff'}),\n",
" \n",
" html.Div(\n",
" [\n",
" html.Button('Reset', id='recommend-wine-from-form-reset', n_clicks=0, style={'margin': '10px', 'background-color': '#444', 'color': '#fff'}),\n",
" html.Button('Recommend Wine', id='recommend-wine-from-form', n_clicks=0, style={'margin': '10px', 'background-color': '#444', 'color': '#fff'}),\n",
" ], style={'textAlign': 'center'}\n",
" ),\n",
" \n",
" html.Div(id='recommended-wine-form-output', style={'textAlign': 'center', 'color': '#fff', 'padding': '10px'}),\n",
"], style={\n",
" 'background-image': 'url(\"/assets/background.jpg\")',\n",
" 'background-size': 'cover',\n",
" 'font-family': 'Fantasy',\n",
" 'color': '#999',\n",
" 'padding': '20px'\n",
"})\n",
"@app.callback(\n",
" Output('recommend-wine-from-form-reset', 'n_clicks'),\n",
" Input('recommend-wine-from-form-reset', 'n_clicks'),\n",
")\n",
"def reset_form(n_clicks):\n",
" if n_clicks > 0:\n",
" TEMPORARY_WINE_RECOMMENDATION_FORM_INFO.clear()\n",
" return 0\n",
"\n",
"@app.callback(\n",
" Output('recommended-wine-rating-info', 'children'),\n",
" Output('submit-button', 'n_clicks'),\n",
" Output('recommend-wine-from-form-text', 'children'),\n",
" Input('submit-button', 'n_clicks'),\n",
" Input('dropdown-selection-wine-form', 'value'),\n",
" Input('input-wine-rating', 'value'),\n",
" Input('recommend-wine-from-form-text', 'children'),\n",
")\n",
"def update_output(n_clicks, wine_name, rating, text_value):\n",
" if n_clicks > 0:\n",
" print(f\"Text Value: {text_value}\")\n",
" TEMPORARY_WINE_RECOMMENDATION_FORM_INFO[wine_name] = rating\n",
" if not text_value:\n",
" text_value = \"|\"\n",
" text_value += f\"{wine_name}: {rating} | \"\n",
" return f'You rated {wine_name} with a score of {rating}', 0, text_value\n",
" return '', 0, text_value\n",
"\n",
"@app.callback(\n",
" Output('recommended-wine-form-output', 'children'),\n",
" Output('recommend-wine-from-form', 'n_clicks'),\n",
" Input('recommend-wine-from-form', 'n_clicks'),\n",
")\n",
"def recommend_wine_from_form(n_clicks):\n",
" if n_clicks > 0:\n",
" user = \"temporary_user\"\n",
" user_rating_df.loc[user] = TEMPORARY_WINE_RECOMMENDATION_FORM_INFO\n",
" user_rating_df.fillna(0, inplace=True)\n",
" user_rating_df['user'] = user_rating_df.index\n",
" user_rating_df['cluster'] = core.get_most_similar_user_clust(user_rating_df, user)\n",
"\n",
"\n",
" wine_recommendation_from_user = core.recommend_wine_from_users(user_rating_df, user, 3)\n",
" wine_recommendation_from_user = f\"Based on user form, we recommend: \"+\"; \".join(wine_recommendation_from_user)\n",
" return wine_recommendation_from_user, 0\n",
" return '', 0\n",
"\n",
"\n",
"@app.callback(\n",
" Output('dropdown-wr', 'options'),\n",
" Input('dropdown-wc', 'value')\n",
")\n",
"def set_wine_type_options(selected_wine_type):\n",
" # Return the options based on the selected wine country\n",
" pattern = r'.*' if selected_wine_type == 'all' else rf'{selected_wine_type}'\n",
" return list(geo[geo['Country'].str.match(pattern, na=False)]['Region'].unique()) + ['all']\n",
"\n",
"\n",
"wiki_layout = html.Div([\n",
" dcc.Link('Dashboard', href='/'),\n",
"\n",
" html.H1('About this project'),\n",
"\n",
" html.Div([\n",
" html.Div([\n",
"\n",
" html.H3('What is this project about?'),\n",
"\n",
" html.P('We are a group of 4 Computer Science Engineering Students with a solid Artificial Intelligence background.'),\n",
" html.P('This project aims to showcase AI applications for improving Wine Tourism for SOGRAPE.'),\n",
"\n",
"\n",
" html.H3('\\'Bout us'),\n",
" html.Img(src='/assets/tourdevino_logo.webp', style={'width': '40%', 'height': 'auto', 'display': 'block', 'margin-left': 'auto', 'margin-right': 'auto'}),\n",
" html.P('This project was developed by a team of 4, in the context of the SOGRAPE 2024 hackathon.'),\n",
" html.P('The team members are:'),\n",
" html.H4('Rui Melo'),\n",
" html.H4('André Catarino'),\n",
" html.H4('Dinis Costa'),\n",
" html.H4('Paulo Fidalgo'),\n",
"\n",
"\n",
" ], className='six columns'),], className='row'),\n",
"],\n",
"style={'background-color': '#333', 'font-family': 'Fantasy', 'color': '#999', 'padding': '10px'}\n",
"\n",
")\n",
"\n",
"# Update the index\n",
"@callback(Output('page-content', 'children'), Input('url', 'pathname'))\n",
"def display_page(pathname):\n",
" if pathname == '/':\n",
" return dashboard_layout\n",
" elif pathname == '/wiki':\n",
" return wiki_layout\n",
" else:\n",
" return '404'\n",
" # You could also return a 404 \"URL not found\" page here\n",
"\n",
"@app.callback(\n",
" Output('wine-recommendation', 'children'),\n",
" Input('dropdown-selection', 'value')\n",
")\n",
"def update_recommendation(value):\n",
" if value:\n",
" recommended_wines = core.get_top_5_similar_wines(value, wine_similarity_df)[1:]\n",
" return f\"Based on ´{value}´, we recommend: \"+\"; \".join(recommended_wines)\n",
" return ''\n",
"\n",
"\n",
"\n",
"\n",
"@app.callback(\n",
" Output('world-map-fig', 'figure'),\n",
" Output('wine-recommendation-from-user', 'children'),\n",
" Input('dropdown-wr', 'value'),\n",
" Input('dropdown-wc', 'value'),\n",
" Input('dropdown-selection-user', 'value')\n",
")\n",
"def update_graph(wr,wc, user_value):\n",
" ## Wine Recommendation from users feedback\n",
"\n",
" wine_recommendation_from_user = core.recommend_wine_from_users(user_rating_df, user_value, 3)\n",
" wine_recommendation_from_user = f\"Based on user information, we recommend: \"+\"; \".join(wine_recommendation_from_user)\n",
"\n",
" ### World Map of wineyards ###\n",
"\n",
" geo_df = pd.read_csv('data/processed_wineyards.csv')\n",
" wr = r'.*' if wr == 'all' else rf'{wr}'\n",
" wc = r'.*' if wc == 'all' else rf'{wc}'\n",
" geo_df = geo_df[geo_df['Region'].str.contains(wr, case=False, na=False, regex=True) & geo_df['Country'].str.contains(wc, case=False, na=False, regex=True)]\n",
"\n",
"\n",
" world_map_fig = px.scatter_map(geo_df,\n",
" lat=geo_df['coord_x'],\n",
" lon=geo_df['coord_y'],\n",
" hover_name=geo_df['name'],\n",
" zoom=4,\n",
" hover_data={\n",
" 'IsTouristic': True,\n",
" 'Wine Type': True,\n",
" 'Country': True,\n",
" 'Region': True,\n",
" 'Address': True,\n",
"\n",
" },\n",
" title='Wineyards around the world',\n",
" )\n",
" \n",
" world_map_fig.update_layout(height=800, width=1200)\n",
"\n",
" \n",
"\n",
"\n",
" return world_map_fig, wine_recommendation_from_user\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" app.run_server(host=\"0.0.0.0\", port=\"8050\", debug=debug)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "atc-smart-shower-YhjpRjjr-py3.10",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|