default / evaluate_model.py
TravisBoltz's picture
Upload 62 files
b4263ca verified
raw
history blame
19.9 kB
import torch
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, ndcg_score
from typing import Dict, List, Tuple
import json
import os
from train_model import HybridMusicRecommender, MusicRecommenderDataset
from torch.utils.data import DataLoader
import logging
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import ParameterGrid, train_test_split
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('model_evaluation.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
class ModelEvaluator:
def __init__(self, model_path: str, test_data: pd.DataFrame, batch_size: int = 32):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model_path = model_path
self.test_data = test_data
self.batch_size = batch_size
# Load model and config
torch.serialization.add_safe_globals([LabelEncoder])
self.checkpoint = torch.load(model_path, map_location=self.device, weights_only=False)
self.config = self.checkpoint['config']
self.encoders = self.checkpoint['encoders']
# Initialize model
self.model = self._initialize_model()
self.test_loader = self._prepare_data()
# Create metrics directory with absolute path
self.metrics_dir = os.path.join(os.path.dirname(model_path), 'metrics')
os.makedirs(self.metrics_dir, exist_ok=True)
def _initialize_model(self, custom_config: Dict = None) -> HybridMusicRecommender:
"""Initialize and load the model from checkpoint."""
# Use custom config if provided, otherwise use default
config = custom_config if custom_config else self.config
model = HybridMusicRecommender(
num_users=len(self.encoders['user_encoder'].classes_),
num_music=len(self.encoders['music_encoder'].classes_),
num_artists=len(self.encoders['artist_encoder'].classes_),
num_genres=len(self.encoders['genre_encoder'].classes_),
num_numerical=12,
embedding_dim=config['embedding_dim'],
layers=config['hidden_layers'],
dropout=config['dropout']
)
# Only load state dict if using default config
if not custom_config:
model.load_state_dict(self.checkpoint['model_state_dict'])
model = model.to(self.device)
model.eval()
return model
def _prepare_data(self) -> DataLoader:
"""Prepare test data loader using saved encoders."""
# Create a custom dataset for test data with the saved encoders
test_dataset = MusicRecommenderDataset(
self.test_data,
mode='test',
encoders=self.encoders
)
logger.info(f"Prepared test dataset with {len(self.test_data)} samples")
return DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
def calculate_metrics(self) -> Dict[str, float]:
"""Calculate various performance metrics."""
true_values = []
predictions = []
with torch.no_grad():
for batch in self.test_loader:
batch = {k: v.to(self.device) for k, v in batch.items()}
pred = self.model(batch)
true_values.extend(batch['playcount'].cpu().numpy())
predictions.extend(pred.cpu().numpy())
true_values = np.array(true_values)
predictions = np.array(predictions)
metrics = {
'mse': float(mean_squared_error(true_values, predictions)),
'rmse': float(np.sqrt(mean_squared_error(true_values, predictions))),
'mae': float(mean_absolute_error(true_values, predictions)),
'r2': float(r2_score(true_values, predictions))
}
# Calculate prediction distribution statistics
metrics.update({
'pred_mean': float(np.mean(predictions)),
'pred_std': float(np.std(predictions)),
'true_mean': float(np.mean(true_values)),
'true_std': float(np.std(true_values))
})
return metrics
def analyze_prediction_bias(self) -> Dict[str, float]:
"""Analyze prediction bias across different value ranges."""
true_values = []
predictions = []
with torch.no_grad():
for batch in self.test_loader:
batch = {k: v.to(self.device) for k, v in batch.items()}
pred = self.model(batch)
true_values.extend(batch['playcount'].cpu().numpy())
predictions.extend(pred.cpu().numpy())
true_values = np.array(true_values)
predictions = np.array(predictions)
# Calculate bias for different value ranges
percentiles = np.percentile(true_values, [25, 50, 75])
ranges = [
(float('-inf'), percentiles[0]),
(percentiles[0], percentiles[1]),
(percentiles[1], percentiles[2]),
(percentiles[2], float('inf'))
]
bias_analysis = {}
for i, (low, high) in enumerate(ranges):
mask = (true_values >= low) & (true_values < high)
if np.any(mask):
bias = np.mean(predictions[mask] - true_values[mask])
bias_analysis[f'bias_range_{i+1}'] = float(bias)
return bias_analysis
def plot_prediction_distribution(self, save_dir: str = None):
"""Plot the distribution of predictions vs true values."""
if save_dir is None:
save_dir = self.metrics_dir
true_values = []
predictions = []
with torch.no_grad():
for batch in self.test_loader:
batch = {k: v.to(self.device) for k, v in batch.items()}
pred = self.model(batch)
true_values.extend(batch['playcount'].cpu().numpy())
predictions.extend(pred.cpu().numpy())
true_values = np.array(true_values)
predictions = np.array(predictions)
# Create scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(true_values, predictions, alpha=0.5)
plt.plot([true_values.min(), true_values.max()],
[true_values.min(), true_values.max()],
'r--', lw=2)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('Prediction vs True Values')
try:
# Save plot with absolute path
plot_path = os.path.join(save_dir, 'prediction_distribution.png')
plt.savefig(plot_path)
plt.close()
logger.info(f"Saved prediction distribution plot to: {plot_path}")
except Exception as e:
logger.error(f"Error saving prediction distribution plot: {str(e)}")
def plot_error_distribution(self, save_dir: str = None):
"""Plot the distribution of prediction errors."""
if save_dir is None:
save_dir = self.metrics_dir
true_values = []
predictions = []
with torch.no_grad():
for batch in self.test_loader:
batch = {k: v.to(self.device) for k, v in batch.items()}
pred = self.model(batch)
true_values.extend(batch['playcount'].cpu().numpy())
predictions.extend(pred.cpu().numpy())
errors = np.array(predictions) - np.array(true_values)
plt.figure(figsize=(10, 6))
sns.histplot(errors, kde=True)
plt.xlabel('Prediction Error')
plt.ylabel('Count')
plt.title('Distribution of Prediction Errors')
try:
plot_path = os.path.join(save_dir, 'error_distribution.png')
plt.savefig(plot_path)
plt.close()
logger.info(f"Saved error distribution plot to: {plot_path}")
except Exception as e:
logger.error(f"Error saving error distribution plot: {str(e)}")
def evaluate_top_k_recommendations(self, k: int = 10) -> Dict[str, float]:
"""Evaluate top-K recommendation metrics."""
user_metrics = []
# Group by user to evaluate per-user recommendations
for user_id in self.test_data['user_id'].unique():
user_mask = self.test_data['user_id'] == user_id
user_data = self.test_data[user_mask]
# Skip users with too few interactions
if len(user_data) < k:
continue
user_dataset = MusicRecommenderDataset(
user_data,
mode='test',
encoders=self.encoders
)
user_loader = DataLoader(user_dataset, batch_size=len(user_data), shuffle=False)
with torch.no_grad():
batch = next(iter(user_loader))
batch = {k: v.to(self.device) for k, v in batch.items()}
predictions = self.model(batch).cpu().numpy()
true_values = batch['playcount'].cpu().numpy()
# Normalize predictions and true values to [0, 1] range
true_values = (true_values - true_values.min()) / (true_values.max() - true_values.min() + 1e-8)
predictions = (predictions - predictions.min()) / (predictions.max() - predictions.min() + 1e-8)
# Calculate metrics for this user
top_k_pred_idx = np.argsort(predictions)[-k:][::-1]
top_k_true_idx = np.argsort(true_values)[-k:][::-1]
# Calculate NDCG
dcg = self._calculate_dcg(true_values, top_k_pred_idx, k)
idcg = self._calculate_dcg(true_values, top_k_true_idx, k)
# Handle edge case where idcg is 0
ndcg = dcg / idcg if idcg > 0 else 0.0
# Calculate precision and recall
relevant_items = set(top_k_true_idx)
recommended_items = set(top_k_pred_idx)
precision = len(relevant_items & recommended_items) / k
recall = len(relevant_items & recommended_items) / len(relevant_items)
user_metrics.append({
'ndcg': ndcg,
'precision': precision,
'recall': recall
})
# Average metrics across users
avg_metrics = {
'ndcg@10': float(np.mean([m['ndcg'] for m in user_metrics])),
'precision@10': float(np.mean([m['precision'] for m in user_metrics])),
'recall@10': float(np.mean([m['recall'] for m in user_metrics]))
}
return avg_metrics
def _calculate_dcg(self, true_values: np.ndarray, indices: np.ndarray, k: int) -> float:
"""Helper method to calculate DCG with numerical stability."""
relevance = true_values[indices[:k]]
# Cap the relevance values to prevent overflow
max_relevance = 10 # Set a reasonable maximum value
relevance = np.clip(relevance, 0, max_relevance)
# Use log2(rank + 1) directly instead of creating array
gains = (2 ** relevance - 1) / np.log2(np.arange(2, len(relevance) + 2))
return float(np.sum(gains))
def evaluate_cold_start(self, min_interactions: int = 5) -> Dict[str, Dict[str, float]]:
"""
Evaluate model performance on cold-start scenarios.
Args:
min_interactions: Minimum number of interactions to consider a user/item as non-cold
Returns:
Dictionary containing metrics for different cold-start scenarios
"""
# Get all unique users and items
all_users = self.test_data['user_id'].unique()
all_items = self.test_data['music_id'].unique()
# Count interactions per user and item
user_counts = self.test_data['user_id'].value_counts()
item_counts = self.test_data['music_id'].value_counts()
# Identify cold users and items
cold_users = set(user_counts[user_counts < min_interactions].index)
cold_items = set(item_counts[item_counts < min_interactions].index)
# Create masks for different scenarios
cold_user_mask = self.test_data['user_id'].isin(cold_users)
cold_item_mask = self.test_data['music_id'].isin(cold_items)
cold_user_warm_item = cold_user_mask & ~cold_item_mask
warm_user_cold_item = ~cold_user_mask & cold_item_mask
cold_both = cold_user_mask & cold_item_mask
warm_both = ~cold_user_mask & ~cold_item_mask
scenarios = {
'cold_user_warm_item': cold_user_warm_item,
'warm_user_cold_item': warm_user_cold_item,
'cold_both': cold_both,
'warm_both': warm_both
}
results = {}
for scenario_name, mask in scenarios.items():
if not any(mask):
logger.warning(f"No samples found for scenario: {scenario_name}")
continue
scenario_data = self.test_data[mask].copy()
# Create a temporary dataset and dataloader for this scenario
scenario_dataset = MusicRecommenderDataset(
scenario_data,
mode='test',
encoders=self.encoders
)
scenario_loader = DataLoader(
scenario_dataset,
batch_size=self.batch_size,
shuffle=False
)
# Collect predictions and true values
true_values = []
predictions = []
with torch.no_grad():
for batch in scenario_loader:
batch = {k: v.to(self.device) for k, v in batch.items()}
pred = self.model(batch)
true_values.extend(batch['playcount'].cpu().numpy())
predictions.extend(pred.cpu().numpy())
true_values = np.array(true_values)
predictions = np.array(predictions)
# Calculate metrics
metrics = {
'count': len(true_values),
'mse': float(mean_squared_error(true_values, predictions)),
'rmse': float(np.sqrt(mean_squared_error(true_values, predictions))),
'mae': float(mean_absolute_error(true_values, predictions)),
'r2': float(r2_score(true_values, predictions)),
'pred_mean': float(np.mean(predictions)),
'pred_std': float(np.std(predictions)),
'true_mean': float(np.mean(true_values)),
'true_std': float(np.std(true_values))
}
results[scenario_name] = metrics
# Log results for this scenario
logger.info(f"\n{scenario_name} Metrics (n={metrics['count']}):")
for metric, value in metrics.items():
if metric != 'count':
logger.info(f"{metric}: {value:.4f}")
return results
def save_evaluation_results(self, save_dir: str = 'metrics'):
"""Run all evaluations and save results."""
os.makedirs(save_dir, exist_ok=True)
# Calculate all metrics
results = {
'basic_metrics': self.calculate_metrics(),
'bias_analysis': self.analyze_prediction_bias(),
'top_k_metrics': self.evaluate_top_k_recommendations(),
'cold_start_metrics': self.evaluate_cold_start(min_interactions=5)
}
# Save results to JSON
results_file = os.path.join(save_dir, 'evaluation_results.json')
with open(results_file, 'w') as f:
json.dump(results, f, indent=4)
logger.info(f"Evaluation completed. Results saved to: {save_dir}")
return results
def tune_hyperparameters(self, param_grid: Dict[str, List], val_data: pd.DataFrame) -> Dict:
"""
Tune hyperparameters using validation set.
Args:
param_grid: Dictionary of parameters to try
val_data: Validation data
Returns:
Best parameters found
"""
best_score = float('inf')
best_params = None
# Create validation dataset
val_dataset = MusicRecommenderDataset(val_data, mode='test', encoders=self.encoders)
val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
# Try all parameter combinations
for params in ParameterGrid(param_grid):
# Create a new config with updated parameters
current_config = self.config.copy()
current_config.update(params)
# Initialize model with current parameters
self.model = self._initialize_model(custom_config=current_config)
# Evaluate on validation set
metrics = self.calculate_metrics()
score = metrics['rmse'] # Use RMSE as scoring metric
if score < best_score:
best_score = score
best_params = params
logger.info(f"New best parameters found: {params} (RMSE: {score:.4f})")
return best_params
def main():
# Load test data and check for data compatibility
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
test_path = os.path.join(ROOT_DIR, 'data', 'test_data.csv')
model_path = os.path.join(ROOT_DIR, 'data_engineered_v3', 'rs_main_v2_refactored', 'checkpoints', 'best_model.pth')
test_data = pd.read_csv(test_path)
logger.info(f"Loaded test data with {len(test_data)} samples")
# Split test data into validation and test
val_data, test_data = train_test_split(test_data, test_size=0.5, random_state=42)
try:
# Initialize evaluator
evaluator = ModelEvaluator(
model_path=model_path,
test_data=test_data,
batch_size=32
)
# Tune hyperparameters
param_grid = {
'embedding_dim': [32, 64, 128],
'dropout': [0.1, 0.2, 0.3],
'hidden_layers': [[128, 64], [256, 128, 64], [512, 256, 128]]
}
best_params = evaluator.tune_hyperparameters(param_grid, val_data)
logger.info(f"Best parameters: {best_params}")
# Run evaluation
results = evaluator.save_evaluation_results()
# Print summary
logger.info("\nEvaluation Summary:")
logger.info("Basic Metrics:")
for metric, value in results['basic_metrics'].items():
logger.info(f"{metric}: {value:.4f}")
logger.info("\nTop-K Metrics:")
for metric, value in results['top_k_metrics'].items():
logger.info(f"{metric}: {value:.4f}")
logger.info("\nBias Analysis:")
for range_name, bias in results['bias_analysis'].items():
logger.info(f"{range_name}: {bias:.4f}")
except Exception as e:
logger.error(f"Error during evaluation: {str(e)}")
raise
if __name__ == "__main__":
main()